michael-guenther
commited on
feat-add-constant-for-task-type-ids (#10)
Browse files- feat: add enum for task type ids (db57d383793c47c7e6f6487d68c20311be3bf20d)
- tokenizer.py +30 -11
tokenizer.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import torch
|
|
|
2 |
import numpy as np
|
3 |
from transformers import RobertaTokenizer, BatchEncoding, RobertaTokenizerFast
|
4 |
import warnings
|
@@ -6,6 +7,14 @@ import warnings
|
|
6 |
|
7 |
def get_tokenizer(parent_class):
|
8 |
class TokenizerClass(parent_class):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def __init__(self, *args, **kwargs):
|
10 |
"""
|
11 |
This class dynamically extends a given tokenizer class from the HF
|
@@ -16,26 +25,34 @@ def get_tokenizer(parent_class):
|
|
16 |
"""
|
17 |
super().__init__(*args, **kwargs)
|
18 |
|
19 |
-
def __call__(self, *args, task_type=None, **kwargs):
|
20 |
batch_encoding = super().__call__(*args, **kwargs)
|
21 |
if task_type is not None:
|
22 |
-
batch_encoding = self._add_task_type_ids(
|
|
|
|
|
23 |
return batch_encoding
|
24 |
|
25 |
-
def _batch_encode_plus(self, *args, task_type=None, **kwargs):
|
26 |
batch_encoding = super()._batch_encode_plus(*args, **kwargs)
|
27 |
if task_type is not None:
|
28 |
-
batch_encoding = self._add_task_type_ids(
|
|
|
|
|
29 |
return batch_encoding
|
30 |
|
31 |
-
def _encode_plus(self, *args, task_type=None, **kwargs):
|
32 |
batch_encoding = super()._encode_plus(*args, **kwargs)
|
33 |
if task_type is not None:
|
34 |
-
batch_encoding = self._add_task_type_ids(
|
|
|
|
|
35 |
return batch_encoding
|
36 |
|
37 |
@classmethod
|
38 |
-
def _add_task_type_ids(
|
|
|
|
|
39 |
return BatchEncoding(
|
40 |
{
|
41 |
'task_type_ids': cls._get_task_type_ids(batch_encoding, task_type),
|
@@ -45,12 +62,11 @@ def get_tokenizer(parent_class):
|
|
45 |
)
|
46 |
|
47 |
@staticmethod
|
48 |
-
def _get_task_type_ids(batch_encoding: BatchEncoding, task_type):
|
49 |
-
|
50 |
def apply_task_type(m, x):
|
51 |
x = torch.tensor(x)
|
52 |
assert (
|
53 |
-
|
54 |
), 'The shape of task_type does not match the size of the batch.'
|
55 |
return m * x if len(x.shape) == 0 else m * x[:, None]
|
56 |
|
@@ -79,10 +95,13 @@ def get_tokenizer(parent_class):
|
|
79 |
warnings.warn(
|
80 |
'input_ids is not a torch tensor, numpy array, or list. Returning torch tensor'
|
81 |
)
|
82 |
-
return apply_task_type(
|
|
|
|
|
83 |
|
84 |
return TokenizerClass
|
85 |
|
86 |
|
87 |
JinaTokenizer = get_tokenizer(RobertaTokenizer)
|
88 |
JinaTokenizerFast = get_tokenizer(RobertaTokenizerFast)
|
|
|
|
1 |
import torch
|
2 |
+
from enum import IntEnum
|
3 |
import numpy as np
|
4 |
from transformers import RobertaTokenizer, BatchEncoding, RobertaTokenizerFast
|
5 |
import warnings
|
|
|
7 |
|
8 |
def get_tokenizer(parent_class):
|
9 |
class TokenizerClass(parent_class):
|
10 |
+
class TaskTypes(IntEnum):
|
11 |
+
NULL = (0,)
|
12 |
+
QUERY = 1
|
13 |
+
DOCUMENT = 2
|
14 |
+
STS = 3
|
15 |
+
CLUSTERING = (4,)
|
16 |
+
CLASSIFICATION = 5
|
17 |
+
|
18 |
def __init__(self, *args, **kwargs):
|
19 |
"""
|
20 |
This class dynamically extends a given tokenizer class from the HF
|
|
|
25 |
"""
|
26 |
super().__init__(*args, **kwargs)
|
27 |
|
28 |
+
def __call__(self, *args, task_type: TaskTypes = None, **kwargs):
|
29 |
batch_encoding = super().__call__(*args, **kwargs)
|
30 |
if task_type is not None:
|
31 |
+
batch_encoding = self._add_task_type_ids(
|
32 |
+
batch_encoding, task_type, kwargs.get('return_tensors')
|
33 |
+
)
|
34 |
return batch_encoding
|
35 |
|
36 |
+
def _batch_encode_plus(self, *args, task_type: TaskTypes = None, **kwargs):
|
37 |
batch_encoding = super()._batch_encode_plus(*args, **kwargs)
|
38 |
if task_type is not None:
|
39 |
+
batch_encoding = self._add_task_type_ids(
|
40 |
+
batch_encoding, task_type, kwargs.get('return_tensors')
|
41 |
+
)
|
42 |
return batch_encoding
|
43 |
|
44 |
+
def _encode_plus(self, *args, task_type: TaskTypes = None, **kwargs):
|
45 |
batch_encoding = super()._encode_plus(*args, **kwargs)
|
46 |
if task_type is not None:
|
47 |
+
batch_encoding = self._add_task_type_ids(
|
48 |
+
batch_encoding, task_type, kwargs.get('return_tensors')
|
49 |
+
)
|
50 |
return batch_encoding
|
51 |
|
52 |
@classmethod
|
53 |
+
def _add_task_type_ids(
|
54 |
+
cls, batch_encoding: BatchEncoding, task_type: TaskTypes, tensor_type: str
|
55 |
+
):
|
56 |
return BatchEncoding(
|
57 |
{
|
58 |
'task_type_ids': cls._get_task_type_ids(batch_encoding, task_type),
|
|
|
62 |
)
|
63 |
|
64 |
@staticmethod
|
65 |
+
def _get_task_type_ids(batch_encoding: BatchEncoding, task_type: TaskTypes):
|
|
|
66 |
def apply_task_type(m, x):
|
67 |
x = torch.tensor(x)
|
68 |
assert (
|
69 |
+
len(x.shape) == 0 or x.shape[0] == m.shape[0]
|
70 |
), 'The shape of task_type does not match the size of the batch.'
|
71 |
return m * x if len(x.shape) == 0 else m * x[:, None]
|
72 |
|
|
|
95 |
warnings.warn(
|
96 |
'input_ids is not a torch tensor, numpy array, or list. Returning torch tensor'
|
97 |
)
|
98 |
+
return apply_task_type(
|
99 |
+
torch.ones(shape, dtype=torch.long), task_type
|
100 |
+
)
|
101 |
|
102 |
return TokenizerClass
|
103 |
|
104 |
|
105 |
JinaTokenizer = get_tokenizer(RobertaTokenizer)
|
106 |
JinaTokenizerFast = get_tokenizer(RobertaTokenizerFast)
|
107 |
+
|