jilijeanlouis
commited on
Upload 17 files
Browse files- CODE_OF_CONDUCT.md +9 -0
- LICENSE +22 -0
- NOTICE.md +38 -0
- README.md +152 -0
- SECURITY.md +41 -0
- added_tokens.json +40 -0
- config.json +34 -0
- configuration_phi.py +193 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +460 -0
- special_tokens_map.json +5 -0
- tokenizer.json +0 -0
- tokenizer_config.json +323 -0
- vocab.json +0 -0
CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Microsoft Open Source Code of Conduct
|
2 |
+
|
3 |
+
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
|
4 |
+
|
5 |
+
Resources:
|
6 |
+
|
7 |
+
- [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
|
8 |
+
- [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
|
9 |
+
- Contact [[email protected]](mailto:[email protected]) with questions or concerns
|
LICENSE
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Microsoft.
|
2 |
+
Copyright (c) Microsoft Corporation.
|
3 |
+
|
4 |
+
MIT License
|
5 |
+
|
6 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
7 |
+
of this software and associated documentation files (the "Software"), to deal
|
8 |
+
in the Software without restriction, including without limitation the rights
|
9 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
10 |
+
copies of the Software, and to permit persons to whom the Software is
|
11 |
+
furnished to do so, subject to the following conditions:
|
12 |
+
|
13 |
+
The above copyright notice and this permission notice shall be included in all
|
14 |
+
copies or substantial portions of the Software.
|
15 |
+
|
16 |
+
THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
17 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
18 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
19 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
20 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
21 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
22 |
+
SOFTWARE.
|
NOTICE.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
NOTICES AND INFORMATION
|
2 |
+
Do Not Translate or Localize
|
3 |
+
|
4 |
+
This software incorporates material from third parties.
|
5 |
+
|
6 |
+
**Component.** https://github.com/Dao-AILab/flash-attention
|
7 |
+
|
8 |
+
**Open Source License/Copyright Notice.**
|
9 |
+
|
10 |
+
BSD 3-Clause License
|
11 |
+
|
12 |
+
Copyright (c) 2022, the respective contributors, as shown by the AUTHORS file.
|
13 |
+
All rights reserved.
|
14 |
+
|
15 |
+
Redistribution and use in source and binary forms, with or without
|
16 |
+
modification, are permitted provided that the following conditions are met:
|
17 |
+
|
18 |
+
* Redistributions of source code must retain the above copyright notice, this
|
19 |
+
list of conditions and the following disclaimer.
|
20 |
+
|
21 |
+
* Redistributions in binary form must reproduce the above copyright notice,
|
22 |
+
this list of conditions and the following disclaimer in the documentation
|
23 |
+
and/or other materials provided with the distribution.
|
24 |
+
|
25 |
+
* Neither the name of the copyright holder nor the names of its
|
26 |
+
contributors may be used to endorse or promote products derived from
|
27 |
+
this software without specific prior written permission.
|
28 |
+
|
29 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
30 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
31 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
32 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
33 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
34 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
35 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
36 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
37 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
38 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
README.md
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
license_link: https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
tags:
|
8 |
+
- nlp
|
9 |
+
- code
|
10 |
+
---
|
11 |
+
|
12 |
+
## Model Summary
|
13 |
+
|
14 |
+
Phi-2 is a Transformer with **2.7 billion** parameters. It was trained using the same data sources as [Phi-1.5](https://huggingface.co/microsoft/phi-1.5), augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
|
15 |
+
|
16 |
+
Our model hasn't been fine-tuned through reinforcement learning from human feedback. The intention behind crafting this open-source model is to provide the research community with a non-restricted small model to explore vital safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more.
|
17 |
+
|
18 |
+
## How to Use
|
19 |
+
|
20 |
+
Phi-2 has been integrated in the `transformers` version 4.37.0, please ensure that you are using a version equal or higher than it.
|
21 |
+
|
22 |
+
Phi-2 is known for having an attention overflow issue (with FP16). If you are facing this issue, please enable/disable autocast on the [PhiAttention.forward()](https://github.com/huggingface/transformers/blob/main/src/transformers/models/phi/modeling_phi.py#L306) function.
|
23 |
+
|
24 |
+
## Intended Uses
|
25 |
+
|
26 |
+
Given the nature of the training data, the Phi-2 model is best suited for prompts using the QA format, the chat format, and the code format.
|
27 |
+
|
28 |
+
### QA Format:
|
29 |
+
|
30 |
+
You can provide the prompt as a standalone question as follows:
|
31 |
+
|
32 |
+
```markdown
|
33 |
+
Write a detailed analogy between mathematics and a lighthouse.
|
34 |
+
```
|
35 |
+
where the model generates the text after "." .
|
36 |
+
To encourage the model to write more concise answers, you can also try the following QA format using "Instruct: \<prompt\>\nOutput:"
|
37 |
+
```markdown
|
38 |
+
Instruct: Write a detailed analogy between mathematics and a lighthouse.
|
39 |
+
Output: Mathematics is like a lighthouse. Just as a lighthouse guides ships safely to shore, mathematics provides a guiding light in the world of numbers and logic. It helps us navigate through complex problems and find solutions. Just as a lighthouse emits a steady beam of light, mathematics provides a consistent framework for reasoning and problem-solving. It illuminates the path to understanding and helps us make sense of the world around us.
|
40 |
+
```
|
41 |
+
|
42 |
+
where the model generates the text after "Output:".
|
43 |
+
|
44 |
+
### Chat Format:
|
45 |
+
|
46 |
+
```markdown
|
47 |
+
Alice: I don't know why, I'm struggling to maintain focus while studying. Any suggestions?
|
48 |
+
Bob: Well, have you tried creating a study schedule and sticking to it?
|
49 |
+
Alice: Yes, I have, but it doesn't seem to help much.
|
50 |
+
Bob: Hmm, maybe you should try studying in a quiet environment, like the library.
|
51 |
+
Alice: ...
|
52 |
+
```
|
53 |
+
|
54 |
+
where the model generates the text after the first "Bob:".
|
55 |
+
|
56 |
+
### Code Format:
|
57 |
+
|
58 |
+
```python
|
59 |
+
def print_prime(n):
|
60 |
+
"""
|
61 |
+
Print all primes between 1 and n
|
62 |
+
"""
|
63 |
+
primes = []
|
64 |
+
for num in range(2, n+1):
|
65 |
+
is_prime = True
|
66 |
+
for i in range(2, int(math.sqrt(num))+1):
|
67 |
+
if num % i == 0:
|
68 |
+
is_prime = False
|
69 |
+
break
|
70 |
+
if is_prime:
|
71 |
+
primes.append(num)
|
72 |
+
print(primes)
|
73 |
+
```
|
74 |
+
|
75 |
+
where the model generates the text after the comments.
|
76 |
+
|
77 |
+
**Notes:**
|
78 |
+
|
79 |
+
* Phi-2 is intended for QA, chat, and code purposes. The model-generated text/code should be treated as a starting point rather than a definitive solution for potential use cases. Users should be cautious when employing these models in their applications.
|
80 |
+
|
81 |
+
* Direct adoption for production tasks without evaluation is out of scope of this project. As a result, the Phi-2 model has not been tested to ensure that it performs adequately for any production-level application. Please refer to the limitation sections of this document for more details.
|
82 |
+
|
83 |
+
* If you are using `transformers<4.37.0`, always load the model with `trust_remote_code=True` to prevent side-effects.
|
84 |
+
|
85 |
+
## Sample Code
|
86 |
+
|
87 |
+
```python
|
88 |
+
import torch
|
89 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
90 |
+
|
91 |
+
torch.set_default_device("cuda")
|
92 |
+
|
93 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", trust_remote_code=True)
|
94 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
95 |
+
|
96 |
+
inputs = tokenizer('''def print_prime(n):
|
97 |
+
"""
|
98 |
+
Print all primes between 1 and n
|
99 |
+
"""''', return_tensors="pt", return_attention_mask=False)
|
100 |
+
|
101 |
+
outputs = model.generate(**inputs, max_length=200)
|
102 |
+
text = tokenizer.batch_decode(outputs)[0]
|
103 |
+
print(text)
|
104 |
+
```
|
105 |
+
|
106 |
+
## Limitations of Phi-2
|
107 |
+
|
108 |
+
* Generate Inaccurate Code and Facts: The model may produce incorrect code snippets and statements. Users should treat these outputs as suggestions or starting points, not as definitive or accurate solutions.
|
109 |
+
|
110 |
+
* Limited Scope for code: Majority of Phi-2 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses.
|
111 |
+
|
112 |
+
* Unreliable Responses to Instruction: The model has not undergone instruction fine-tuning. As a result, it may struggle or fail to adhere to intricate or nuanced instructions provided by users.
|
113 |
+
|
114 |
+
* Language Limitations: The model is primarily designed to understand standard English. Informal English, slang, or any other languages might pose challenges to its comprehension, leading to potential misinterpretations or errors in response.
|
115 |
+
|
116 |
+
* Potential Societal Biases: Phi-2 is not entirely free from societal biases despite efforts in assuring training data safety. There's a possibility it may generate content that mirrors these societal biases, particularly if prompted or instructed to do so. We urge users to be aware of this and to exercise caution and critical thinking when interpreting model outputs.
|
117 |
+
|
118 |
+
* Toxicity: Despite being trained with carefully selected data, the model can still produce harmful content if explicitly prompted or instructed to do so. We chose to release the model to help the open-source community develop the most effective ways to reduce the toxicity of a model directly after pretraining.
|
119 |
+
|
120 |
+
* Verbosity: Phi-2 being a base model often produces irrelevant or extra text and responses following its first answer to user prompts within a single turn. This is due to its training dataset being primarily textbooks, which results in textbook-like responses.
|
121 |
+
|
122 |
+
## Training
|
123 |
+
|
124 |
+
### Model
|
125 |
+
|
126 |
+
* Architecture: a Transformer-based model with next-word prediction objective
|
127 |
+
|
128 |
+
* Context length: 2048 tokens
|
129 |
+
|
130 |
+
* Dataset size: 250B tokens, combination of NLP synthetic data created by AOAI GPT-3.5 and filtered web data from Falcon RefinedWeb and SlimPajama, which was assessed by AOAI GPT-4.
|
131 |
+
|
132 |
+
* Training tokens: 1.4T tokens
|
133 |
+
|
134 |
+
* GPUs: 96xA100-80G
|
135 |
+
|
136 |
+
* Training time: 14 days
|
137 |
+
|
138 |
+
### Software
|
139 |
+
|
140 |
+
* [PyTorch](https://github.com/pytorch/pytorch)
|
141 |
+
|
142 |
+
* [DeepSpeed](https://github.com/microsoft/DeepSpeed)
|
143 |
+
|
144 |
+
* [Flash-Attention](https://github.com/HazyResearch/flash-attention)
|
145 |
+
|
146 |
+
### License
|
147 |
+
|
148 |
+
The model is licensed under the [MIT license](https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE).
|
149 |
+
|
150 |
+
## Trademarks
|
151 |
+
|
152 |
+
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.
|
SECURITY.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.9 BLOCK -->
|
2 |
+
|
3 |
+
## Security
|
4 |
+
|
5 |
+
Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet) and [Xamarin](https://github.com/xamarin).
|
6 |
+
|
7 |
+
If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/security.md/definition), please report it to us as described below.
|
8 |
+
|
9 |
+
## Reporting Security Issues
|
10 |
+
|
11 |
+
**Please do not report security vulnerabilities through public GitHub issues.**
|
12 |
+
|
13 |
+
Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/security.md/msrc/create-report).
|
14 |
+
|
15 |
+
If you prefer to submit without logging in, send email to [[email protected]](mailto:[email protected]). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/security.md/msrc/pgp).
|
16 |
+
|
17 |
+
You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
|
18 |
+
|
19 |
+
Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
|
20 |
+
|
21 |
+
* Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
|
22 |
+
* Full paths of source file(s) related to the manifestation of the issue
|
23 |
+
* The location of the affected source code (tag/branch/commit or direct URL)
|
24 |
+
* Any special configuration required to reproduce the issue
|
25 |
+
* Step-by-step instructions to reproduce the issue
|
26 |
+
* Proof-of-concept or exploit code (if possible)
|
27 |
+
* Impact of the issue, including how an attacker might exploit the issue
|
28 |
+
|
29 |
+
This information will help us triage your report more quickly.
|
30 |
+
|
31 |
+
If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/security.md/msrc/bounty) page for more details about our active programs.
|
32 |
+
|
33 |
+
## Preferred Languages
|
34 |
+
|
35 |
+
We prefer all communications to be in English.
|
36 |
+
|
37 |
+
## Policy
|
38 |
+
|
39 |
+
Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/security.md/cvd).
|
40 |
+
|
41 |
+
<!-- END MICROSOFT SECURITY.MD BLOCK -->
|
added_tokens.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"\t\t": 50294,
|
3 |
+
"\t\t\t": 50293,
|
4 |
+
"\t\t\t\t": 50292,
|
5 |
+
"\t\t\t\t\t": 50291,
|
6 |
+
"\t\t\t\t\t\t": 50290,
|
7 |
+
"\t\t\t\t\t\t\t": 50289,
|
8 |
+
"\t\t\t\t\t\t\t\t": 50288,
|
9 |
+
"\t\t\t\t\t\t\t\t\t": 50287,
|
10 |
+
" ": 50286,
|
11 |
+
" ": 50285,
|
12 |
+
" ": 50284,
|
13 |
+
" ": 50283,
|
14 |
+
" ": 50282,
|
15 |
+
" ": 50281,
|
16 |
+
" ": 50280,
|
17 |
+
" ": 50279,
|
18 |
+
" ": 50278,
|
19 |
+
" ": 50277,
|
20 |
+
" ": 50276,
|
21 |
+
" ": 50275,
|
22 |
+
" ": 50274,
|
23 |
+
" ": 50273,
|
24 |
+
" ": 50272,
|
25 |
+
" ": 50271,
|
26 |
+
" ": 50270,
|
27 |
+
" ": 50269,
|
28 |
+
" ": 50268,
|
29 |
+
" ": 50267,
|
30 |
+
" ": 50266,
|
31 |
+
" ": 50265,
|
32 |
+
" ": 50264,
|
33 |
+
" ": 50263,
|
34 |
+
" ": 50262,
|
35 |
+
" ": 50261,
|
36 |
+
" ": 50260,
|
37 |
+
" ": 50259,
|
38 |
+
" ": 50258,
|
39 |
+
" ": 50257
|
40 |
+
}
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/phi-2",
|
3 |
+
"architectures": [
|
4 |
+
"PhiForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_phi.PhiConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
|
9 |
+
},
|
10 |
+
"attention_dropout": 0.0,
|
11 |
+
"bos_token_id": null,
|
12 |
+
"embd_pdrop": 0.0,
|
13 |
+
"eos_token_id": null,
|
14 |
+
"hidden_act": "gelu_new",
|
15 |
+
"hidden_size": 2560,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 10240,
|
18 |
+
"layer_norm_eps": 1e-05,
|
19 |
+
"max_position_embeddings": 2048,
|
20 |
+
"model_type": "phi",
|
21 |
+
"num_attention_heads": 32,
|
22 |
+
"num_hidden_layers": 32,
|
23 |
+
"num_key_value_heads": 32,
|
24 |
+
"partial_rotary_factor": 0.4,
|
25 |
+
"qk_layernorm": false,
|
26 |
+
"resid_pdrop": 0.1,
|
27 |
+
"rope_scaling": null,
|
28 |
+
"rope_theta": 10000.0,
|
29 |
+
"tie_word_embeddings": false,
|
30 |
+
"torch_dtype": "float16",
|
31 |
+
"transformers_version": "4.37.0.dev0",
|
32 |
+
"use_cache": true,
|
33 |
+
"vocab_size": 51200
|
34 |
+
}
|
configuration_phi.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi model configuration"""
|
17 |
+
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"microsoft/phi-2": "https://huggingface.co/microsoft/phi-2/resolve/main/config.json",
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
class PhiConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
|
33 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
34 |
+
defaults will yield a similar configuration to that of the Phi
|
35 |
+
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 51200):
|
42 |
+
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`PhiModel`].
|
44 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
45 |
+
Dimension of the hidden representations.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
47 |
+
Dimension of the MLP representations.
|
48 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
49 |
+
Number of hidden layers in the Transformer decoder.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
51 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
52 |
+
num_key_value_heads (`int`, *optional*):
|
53 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
54 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
55 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
56 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
57 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
58 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
59 |
+
`num_attention_heads`.
|
60 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
61 |
+
Dropout probability for mlp outputs.
|
62 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
63 |
+
The dropout ratio for the embeddings.
|
64 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
65 |
+
The dropout ratio after computing the attention scores.
|
66 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
67 |
+
The non-linear activation function (function or string) in the decoder.
|
68 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
69 |
+
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
|
70 |
+
tokens.
|
71 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
72 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
73 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
74 |
+
The epsilon used by the rms normalization layers.
|
75 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
76 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
77 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
78 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
79 |
+
Whether to tie weight embeddings
|
80 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
81 |
+
The base period of the RoPE embeddings.
|
82 |
+
rope_scaling (`Dict`, *optional*):
|
83 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
84 |
+
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
85 |
+
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
86 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
87 |
+
these scaling strategies behave:
|
88 |
+
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
|
89 |
+
is an experimental feature, subject to breaking API changes in future versions.
|
90 |
+
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
|
91 |
+
Percentage of the query and keys which will have rotary embedding.
|
92 |
+
qk_layernorm (`bool`, *optional*, defaults to `False`):
|
93 |
+
Whether or not to normalize the Queries and Keys after projecting the hidden states.
|
94 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
95 |
+
Denotes beginning of sequences token id.
|
96 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
97 |
+
Denotes end of sequences token id.
|
98 |
+
|
99 |
+
Example:
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import PhiModel, PhiConfig
|
103 |
+
|
104 |
+
>>> # Initializing a Phi-1 style configuration
|
105 |
+
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
|
106 |
+
|
107 |
+
>>> # Initializing a model from the configuration
|
108 |
+
>>> model = PhiModel(configuration)
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "phi"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=51200,
|
120 |
+
hidden_size=2048,
|
121 |
+
intermediate_size=8192,
|
122 |
+
num_hidden_layers=24,
|
123 |
+
num_attention_heads=32,
|
124 |
+
num_key_value_heads=None,
|
125 |
+
resid_pdrop=0.0,
|
126 |
+
embd_pdrop=0.0,
|
127 |
+
attention_dropout=0.0,
|
128 |
+
hidden_act="gelu_new",
|
129 |
+
max_position_embeddings=2048,
|
130 |
+
initializer_range=0.02,
|
131 |
+
layer_norm_eps=1e-5,
|
132 |
+
use_cache=True,
|
133 |
+
tie_word_embeddings=False,
|
134 |
+
rope_theta=10000.0,
|
135 |
+
rope_scaling=None,
|
136 |
+
partial_rotary_factor=0.5,
|
137 |
+
qk_layernorm=False,
|
138 |
+
bos_token_id=1,
|
139 |
+
eos_token_id=2,
|
140 |
+
**kwargs,
|
141 |
+
):
|
142 |
+
self.vocab_size = vocab_size
|
143 |
+
self.hidden_size = hidden_size
|
144 |
+
self.intermediate_size = intermediate_size
|
145 |
+
self.num_hidden_layers = num_hidden_layers
|
146 |
+
self.num_attention_heads = num_attention_heads
|
147 |
+
|
148 |
+
if num_key_value_heads is None:
|
149 |
+
num_key_value_heads = num_attention_heads
|
150 |
+
|
151 |
+
self.num_key_value_heads = num_key_value_heads
|
152 |
+
self.resid_pdrop = resid_pdrop
|
153 |
+
self.embd_pdrop = embd_pdrop
|
154 |
+
self.attention_dropout = attention_dropout
|
155 |
+
self.hidden_act = hidden_act
|
156 |
+
self.max_position_embeddings = max_position_embeddings
|
157 |
+
self.initializer_range = initializer_range
|
158 |
+
self.layer_norm_eps = layer_norm_eps
|
159 |
+
self.use_cache = use_cache
|
160 |
+
self.rope_theta = rope_theta
|
161 |
+
self.rope_scaling = rope_scaling
|
162 |
+
self.partial_rotary_factor = partial_rotary_factor
|
163 |
+
self.qk_layernorm = qk_layernorm
|
164 |
+
self._rope_scaling_validation()
|
165 |
+
|
166 |
+
super().__init__(
|
167 |
+
bos_token_id=bos_token_id,
|
168 |
+
eos_token_id=eos_token_id,
|
169 |
+
tie_word_embeddings=tie_word_embeddings,
|
170 |
+
**kwargs,
|
171 |
+
)
|
172 |
+
|
173 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
174 |
+
def _rope_scaling_validation(self):
|
175 |
+
"""
|
176 |
+
Validate the `rope_scaling` configuration.
|
177 |
+
"""
|
178 |
+
if self.rope_scaling is None:
|
179 |
+
return
|
180 |
+
|
181 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
182 |
+
raise ValueError(
|
183 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
184 |
+
f"got {self.rope_scaling}"
|
185 |
+
)
|
186 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
187 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
188 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
189 |
+
raise ValueError(
|
190 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
191 |
+
)
|
192 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
193 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.37.0.dev0",
|
4 |
+
"eos_token_id": 50256,
|
5 |
+
"bos_token_id": 50256
|
6 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9f6ce161f0b62d17ce27859c3463c75bb93b2ec69373875f69853c0f03605cf
|
3 |
+
size 135
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f53914f00d87d6fdf8b81f2a3975a63723831ed1b7573a06c3cd82f70aa7996
|
3 |
+
size 134
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 5559367680
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.bias": "model-00002-of-00002.safetensors",
|
7 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
8 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.final_layernorm.bias": "model-00002-of-00002.safetensors",
|
10 |
+
"model.final_layernorm.weight": "model-00002-of-00002.safetensors",
|
11 |
+
"model.layers.0.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.1.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.10.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.10.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.11.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.11.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.12.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.12.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.13.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.13.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.13.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.14.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.14.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.14.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.15.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.15.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.15.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.16.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.16.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.16.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.17.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.17.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.17.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.18.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.18.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.18.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.19.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.19.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.19.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.2.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.2.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.2.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.20.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.20.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.20.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.21.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.21.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.21.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.22.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.22.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.22.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.23.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.23.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.23.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.24.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.24.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.24.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.25.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.25.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.25.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
274 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
276 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
277 |
+
"model.layers.26.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
278 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"model.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
280 |
+
"model.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"model.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
282 |
+
"model.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"model.layers.26.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.26.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.27.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.27.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.27.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.27.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.27.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
297 |
+
"model.layers.27.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
298 |
+
"model.layers.27.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
299 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
300 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
301 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
302 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
303 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
304 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
305 |
+
"model.layers.28.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
306 |
+
"model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
307 |
+
"model.layers.28.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
308 |
+
"model.layers.28.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
309 |
+
"model.layers.28.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
310 |
+
"model.layers.28.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
311 |
+
"model.layers.28.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
312 |
+
"model.layers.28.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
313 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
314 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
315 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
316 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
317 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
318 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
319 |
+
"model.layers.29.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
320 |
+
"model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
321 |
+
"model.layers.29.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
322 |
+
"model.layers.29.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
323 |
+
"model.layers.29.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
324 |
+
"model.layers.29.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
325 |
+
"model.layers.29.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
326 |
+
"model.layers.29.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
327 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
328 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
329 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
330 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
331 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
332 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
333 |
+
"model.layers.3.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
334 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
335 |
+
"model.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
336 |
+
"model.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
337 |
+
"model.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
338 |
+
"model.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"model.layers.3.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
340 |
+
"model.layers.3.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
342 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
343 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
344 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
345 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
346 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
347 |
+
"model.layers.30.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.30.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.30.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.30.self_attn.dense.bias": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.30.self_attn.dense.weight": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
358 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
359 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.31.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.31.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.31.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.31.self_attn.dense.bias": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.31.self_attn.dense.weight": "model-00002-of-00002.safetensors",
|
369 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
370 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
371 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
372 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
373 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
374 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
375 |
+
"model.layers.4.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.4.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.4.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.5.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.5.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.6.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.6.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.6.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.7.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.7.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.7.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.8.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.8.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.8.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
440 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
441 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
442 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
443 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
444 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
445 |
+
"model.layers.9.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
446 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
447 |
+
"model.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
448 |
+
"model.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
449 |
+
"model.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
450 |
+
"model.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
451 |
+
"model.layers.9.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
452 |
+
"model.layers.9.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
453 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
454 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
455 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
456 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
457 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
458 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors"
|
459 |
+
}
|
460 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"unk_token": "<|endoftext|>"
|
5 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"50256": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"50257": {
|
13 |
+
"content": " ",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": false
|
19 |
+
},
|
20 |
+
"50258": {
|
21 |
+
"content": " ",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": false
|
27 |
+
},
|
28 |
+
"50259": {
|
29 |
+
"content": " ",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": false
|
35 |
+
},
|
36 |
+
"50260": {
|
37 |
+
"content": " ",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": false
|
43 |
+
},
|
44 |
+
"50261": {
|
45 |
+
"content": " ",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": false
|
51 |
+
},
|
52 |
+
"50262": {
|
53 |
+
"content": " ",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": true,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": false
|
59 |
+
},
|
60 |
+
"50263": {
|
61 |
+
"content": " ",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": true,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": false
|
67 |
+
},
|
68 |
+
"50264": {
|
69 |
+
"content": " ",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": true,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": false
|
75 |
+
},
|
76 |
+
"50265": {
|
77 |
+
"content": " ",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": true,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": false
|
83 |
+
},
|
84 |
+
"50266": {
|
85 |
+
"content": " ",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": true,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": false
|
91 |
+
},
|
92 |
+
"50267": {
|
93 |
+
"content": " ",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": true,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": false
|
99 |
+
},
|
100 |
+
"50268": {
|
101 |
+
"content": " ",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": true,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": false
|
107 |
+
},
|
108 |
+
"50269": {
|
109 |
+
"content": " ",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": true,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": false
|
115 |
+
},
|
116 |
+
"50270": {
|
117 |
+
"content": " ",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": true,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": false
|
123 |
+
},
|
124 |
+
"50271": {
|
125 |
+
"content": " ",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": true,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": false
|
131 |
+
},
|
132 |
+
"50272": {
|
133 |
+
"content": " ",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": true,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": false
|
139 |
+
},
|
140 |
+
"50273": {
|
141 |
+
"content": " ",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": true,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": false
|
147 |
+
},
|
148 |
+
"50274": {
|
149 |
+
"content": " ",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": true,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": false
|
155 |
+
},
|
156 |
+
"50275": {
|
157 |
+
"content": " ",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": true,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": false
|
163 |
+
},
|
164 |
+
"50276": {
|
165 |
+
"content": " ",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": true,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": false
|
171 |
+
},
|
172 |
+
"50277": {
|
173 |
+
"content": " ",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": true,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": false
|
179 |
+
},
|
180 |
+
"50278": {
|
181 |
+
"content": " ",
|
182 |
+
"lstrip": false,
|
183 |
+
"normalized": true,
|
184 |
+
"rstrip": false,
|
185 |
+
"single_word": false,
|
186 |
+
"special": false
|
187 |
+
},
|
188 |
+
"50279": {
|
189 |
+
"content": " ",
|
190 |
+
"lstrip": false,
|
191 |
+
"normalized": true,
|
192 |
+
"rstrip": false,
|
193 |
+
"single_word": false,
|
194 |
+
"special": false
|
195 |
+
},
|
196 |
+
"50280": {
|
197 |
+
"content": " ",
|
198 |
+
"lstrip": false,
|
199 |
+
"normalized": true,
|
200 |
+
"rstrip": false,
|
201 |
+
"single_word": false,
|
202 |
+
"special": false
|
203 |
+
},
|
204 |
+
"50281": {
|
205 |
+
"content": " ",
|
206 |
+
"lstrip": false,
|
207 |
+
"normalized": true,
|
208 |
+
"rstrip": false,
|
209 |
+
"single_word": false,
|
210 |
+
"special": false
|
211 |
+
},
|
212 |
+
"50282": {
|
213 |
+
"content": " ",
|
214 |
+
"lstrip": false,
|
215 |
+
"normalized": true,
|
216 |
+
"rstrip": false,
|
217 |
+
"single_word": false,
|
218 |
+
"special": false
|
219 |
+
},
|
220 |
+
"50283": {
|
221 |
+
"content": " ",
|
222 |
+
"lstrip": false,
|
223 |
+
"normalized": true,
|
224 |
+
"rstrip": false,
|
225 |
+
"single_word": false,
|
226 |
+
"special": false
|
227 |
+
},
|
228 |
+
"50284": {
|
229 |
+
"content": " ",
|
230 |
+
"lstrip": false,
|
231 |
+
"normalized": true,
|
232 |
+
"rstrip": false,
|
233 |
+
"single_word": false,
|
234 |
+
"special": false
|
235 |
+
},
|
236 |
+
"50285": {
|
237 |
+
"content": " ",
|
238 |
+
"lstrip": false,
|
239 |
+
"normalized": true,
|
240 |
+
"rstrip": false,
|
241 |
+
"single_word": false,
|
242 |
+
"special": false
|
243 |
+
},
|
244 |
+
"50286": {
|
245 |
+
"content": " ",
|
246 |
+
"lstrip": false,
|
247 |
+
"normalized": true,
|
248 |
+
"rstrip": false,
|
249 |
+
"single_word": false,
|
250 |
+
"special": false
|
251 |
+
},
|
252 |
+
"50287": {
|
253 |
+
"content": "\t\t\t\t\t\t\t\t\t",
|
254 |
+
"lstrip": false,
|
255 |
+
"normalized": true,
|
256 |
+
"rstrip": false,
|
257 |
+
"single_word": false,
|
258 |
+
"special": false
|
259 |
+
},
|
260 |
+
"50288": {
|
261 |
+
"content": "\t\t\t\t\t\t\t\t",
|
262 |
+
"lstrip": false,
|
263 |
+
"normalized": true,
|
264 |
+
"rstrip": false,
|
265 |
+
"single_word": false,
|
266 |
+
"special": false
|
267 |
+
},
|
268 |
+
"50289": {
|
269 |
+
"content": "\t\t\t\t\t\t\t",
|
270 |
+
"lstrip": false,
|
271 |
+
"normalized": true,
|
272 |
+
"rstrip": false,
|
273 |
+
"single_word": false,
|
274 |
+
"special": false
|
275 |
+
},
|
276 |
+
"50290": {
|
277 |
+
"content": "\t\t\t\t\t\t",
|
278 |
+
"lstrip": false,
|
279 |
+
"normalized": true,
|
280 |
+
"rstrip": false,
|
281 |
+
"single_word": false,
|
282 |
+
"special": false
|
283 |
+
},
|
284 |
+
"50291": {
|
285 |
+
"content": "\t\t\t\t\t",
|
286 |
+
"lstrip": false,
|
287 |
+
"normalized": true,
|
288 |
+
"rstrip": false,
|
289 |
+
"single_word": false,
|
290 |
+
"special": false
|
291 |
+
},
|
292 |
+
"50292": {
|
293 |
+
"content": "\t\t\t\t",
|
294 |
+
"lstrip": false,
|
295 |
+
"normalized": true,
|
296 |
+
"rstrip": false,
|
297 |
+
"single_word": false,
|
298 |
+
"special": false
|
299 |
+
},
|
300 |
+
"50293": {
|
301 |
+
"content": "\t\t\t",
|
302 |
+
"lstrip": false,
|
303 |
+
"normalized": true,
|
304 |
+
"rstrip": false,
|
305 |
+
"single_word": false,
|
306 |
+
"special": false
|
307 |
+
},
|
308 |
+
"50294": {
|
309 |
+
"content": "\t\t",
|
310 |
+
"lstrip": false,
|
311 |
+
"normalized": true,
|
312 |
+
"rstrip": false,
|
313 |
+
"single_word": false,
|
314 |
+
"special": false
|
315 |
+
}
|
316 |
+
},
|
317 |
+
"bos_token": "<|endoftext|>",
|
318 |
+
"clean_up_tokenization_spaces": true,
|
319 |
+
"eos_token": "<|endoftext|>",
|
320 |
+
"model_max_length": 2048,
|
321 |
+
"tokenizer_class": "CodeGenTokenizer",
|
322 |
+
"unk_token": "<|endoftext|>"
|
323 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|