---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10000
- loss:SoftmaxLoss
base_model: google-bert/bert-base-uncased
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: A man selling donuts to a customer during a world exhibition event
held in the city of Angeles
sentences:
- The man is doing tricks.
- A woman drinks her coffee in a small cafe.
- The building is made of logs.
- source_sentence: A group of people prepare hot air balloons for takeoff.
sentences:
- There are hot air balloons on the ground and air.
- A man is in an art museum.
- People watch another person do a trick.
- source_sentence: Three workers are trimming down trees.
sentences:
- The goalie is sleeping at home.
- There are three workers
- The girl has brown hair.
- source_sentence: Two brown-haired men wearing short-sleeved shirts and shorts are
climbing stairs.
sentences:
- The men have blonde hair.
- A bicyclist passes an esthetically beautiful building on a sunny day
- Two men are dancing.
- source_sentence: A man is sitting in on the side of the street with brass pots.
sentences:
- a younger boy looks at his father
- Children are at the beach.
- a man does not have brass pots
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 147.28843774992524
energy_consumed: 0.2758298255748315
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: AMD EPYC 7H12 64-Core Processor
ram_total_size: 229.14864349365234
hours_used: 0.351
hardware_used: 8 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on google-bert/bert-base-uncased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.47725003430658275
name: Pearson Cosine
- type: spearman_cosine
value: 0.5475746919034576
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5043805022296893
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5420702830995872
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5083739540394052
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.544209699690841
name: Spearman Euclidean
- type: pearson_dot
value: 0.4458579859528435
name: Pearson Dot
- type: spearman_dot
value: 0.4698642508787034
name: Spearman Dot
- type: pearson_max
value: 0.5083739540394052
name: Pearson Max
- type: spearman_max
value: 0.5475746919034576
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.5320947494943107
name: Pearson Cosine
- type: spearman_cosine
value: 0.5317279446221387
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5575308236485216
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5554390408837996
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.55587770863865
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.5535804159700501
name: Spearman Euclidean
- type: pearson_dot
value: 0.2787697886285483
name: Pearson Dot
- type: spearman_dot
value: 0.2710358104528421
name: Spearman Dot
- type: pearson_max
value: 0.5575308236485216
name: Pearson Max
- type: spearman_max
value: 0.5554390408837996
name: Spearman Max
- type: pearson_cosine
value: 0.4493844540252116
name: Pearson Cosine
- type: spearman_cosine
value: 0.4694611677633312
name: Spearman Cosine
- type: pearson_manhattan
value: 0.4773641092320219
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.4763054309792941
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.4796801942910325
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.47774521406648734
name: Spearman Euclidean
- type: pearson_dot
value: 0.4081600817978359
name: Pearson Dot
- type: spearman_dot
value: 0.3898881150281674
name: Spearman Dot
- type: pearson_max
value: 0.4796801942910325
name: Pearson Max
- type: spearman_max
value: 0.47774521406648734
name: Spearman Max
---
# SentenceTransformer based on google-bert/bert-base-uncased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jilangdi/bert-base-uncased-nli-v1")
# Run inference
sentences = [
'A man is sitting in on the side of the street with brass pots.',
'a man does not have brass pots',
'Children are at the beach.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.4773 |
| **spearman_cosine** | **0.5476** |
| pearson_manhattan | 0.5044 |
| spearman_manhattan | 0.5421 |
| pearson_euclidean | 0.5084 |
| spearman_euclidean | 0.5442 |
| pearson_dot | 0.4459 |
| spearman_dot | 0.4699 |
| pearson_max | 0.5084 |
| spearman_max | 0.5476 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.5321 |
| **spearman_cosine** | **0.5317** |
| pearson_manhattan | 0.5575 |
| spearman_manhattan | 0.5554 |
| pearson_euclidean | 0.5559 |
| spearman_euclidean | 0.5536 |
| pearson_dot | 0.2788 |
| spearman_dot | 0.271 |
| pearson_max | 0.5575 |
| spearman_max | 0.5554 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.4494 |
| **spearman_cosine** | **0.4695** |
| pearson_manhattan | 0.4774 |
| spearman_manhattan | 0.4763 |
| pearson_euclidean | 0.4797 |
| spearman_euclidean | 0.4777 |
| pearson_dot | 0.4082 |
| spearman_dot | 0.3899 |
| pearson_max | 0.4797 |
| spearman_max | 0.4777 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 10,000 training samples
* Columns: premise
, hypothesis
, and label
* Approximate statistics based on the first 1000 samples:
| | premise | hypothesis | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details |
A person on a horse jumps over a broken down airplane.
| A person is training his horse for a competition.
| 1
|
| A person on a horse jumps over a broken down airplane.
| A person is at a diner, ordering an omelette.
| 2
|
| A person on a horse jumps over a broken down airplane.
| A person is outdoors, on a horse.
| 0
|
* Loss: [SoftmaxLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,000 evaluation samples
* Columns: premise
, hypothesis
, and label
* Approximate statistics based on the first 1000 samples:
| | premise | hypothesis | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | Two women are embracing while holding to go packages.
| The sisters are hugging goodbye while holding to go packages after just eating lunch.
| 1
|
| Two women are embracing while holding to go packages.
| Two woman are holding packages.
| 0
|
| Two women are embracing while holding to go packages.
| The men are fighting outside a deli.
| 2
|
* Loss: [SoftmaxLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters