--- license: apache-2.0 base_model: beomi/kcbert-base tags: - generated_from_trainer datasets: - nsmc metrics: - accuracy model-index: - name: kcbert results: - task: name: Text Classification type: text-classification dataset: name: nsmc type: nsmc config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.90152 --- # kcbert This model is a fine-tuned version of [beomi/kcbert-base](https://huggingface.co./beomi/kcbert-base) on the nsmc dataset. It achieves the following results on the evaluation set: - Loss: 0.3059 - Accuracy: 0.9015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2703 | 1.0 | 9375 | 0.2601 | 0.8960 | | 0.2128 | 2.0 | 18750 | 0.2690 | 0.8997 | | 0.1637 | 3.0 | 28125 | 0.3059 | 0.9015 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3