jiiyy commited on
Commit
d79f7b1
·
1 Parent(s): 9e27457

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: beomi/kcbert-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - nsmc
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: kcbert
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: nsmc
18
+ type: nsmc
19
+ config: default
20
+ split: test
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.90152
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # kcbert
32
+
33
+ This model is a fine-tuned version of [beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base) on the nsmc dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.3059
36
+ - Accuracy: 0.9015
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-06
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: cosine
61
+ - num_epochs: 3
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
67
+ | 0.2703 | 1.0 | 9375 | 0.2601 | 0.8960 |
68
+ | 0.2128 | 2.0 | 18750 | 0.2690 | 0.8997 |
69
+ | 0.1637 | 3.0 | 28125 | 0.3059 | 0.9015 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.31.0
75
+ - Pytorch 2.0.1+cu118
76
+ - Datasets 2.14.4
77
+ - Tokenizers 0.13.3