File size: 7,277 Bytes
3e6720b 95a6e33 6b91e3c 999ed39 9e3e410 bac5457 9e3e410 6b91e3c 9e3e410 649f6ff 9e3e410 649f6ff 9e3e410 4c21535 9e3e410 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: mit
datasets:
- mlfoundations/datacomp_1b
pipeline_tag: feature-extraction
---
# Model card for ViTamin-L-336px
Official huggingface models of **ViTamin**, from the following CVPR 2024 paper:
[ViTamin: Design Scalable Vision Models in the Vision-language Era](https://arxiv.org/pdf/2404.02132.pdf).\
✨  [Jieneng Chen](https://beckschen.github.io), [Qihang Yu](https://yucornetto.github.io/), [Xiaohui Shen](https://xiaohuishen.github.io/), [Alan Yuille](https://www.cs.jhu.edu/~ayuille/) and [Liang-Chieh Chen](http://liangchiehchen.com/)\
🏠  Johns Hopkins University, Bytedance
🔥 This ViTamin-L-336px is the pre-trained model transferred to open-vocabulary detection and segmentation, and large multi-modal models in our paper.
Load from HuggingFace with transformers.AutoModel:
```python
import torch
import open_clip
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModel.from_pretrained(
'jienengchen/ViTamin-L-336px',
trust_remote_code=True).to(device).eval()
image = Image.open('./image.png').convert('RGB')
image_processor = CLIPImageProcessor.from_pretrained('jienengchen/ViTamin-L-336px')
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K')
text = tokenizer(["a photo of vitamin", "a dog", "a cat"]).to(device)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features, text_features, logit_scale = model(pixel_values, text)
text_probs = (100.0 * image_features @ text_features.to(torch.float).T).softmax(dim=-1)
print("Label probs:", text_probs)
```
## Main Results with CLIP Pre-training on DataComp-1B
| image encoder | image size | num patches | text encoder depth/width | seen samples (B) | trainable params Image+Text (M) | MACs Image+Text (G) | ImageNet Acc. | avg. 38 datasets | ImageNet dist. shift. | VTAB | retrieval |
|---------------|------------|-------------|--------------------------|-------------------|---------------------------------|----------------------|---------------|------------------|-----------------------|------|-----------|
| ViTamin-L | 224 | 196 | 12/768 | 12.8 | 333.3+123.7 | 72.6+6.6 | 80.8 | 66.7 | 69.8 | 65.3 | 60.3 |
| ViTamin-L | 256 | 256 | 12/768 | 12.8+0.2 | 333.4+123.7 | 94.8+6.6 | 81.2 | 67.0 | 71.1 | 65.3 | 61.2 |
| ViTamin-L | 336 | 441 | 12/768 | 12.8+0.2 | 333.6+123.7 | 163.4+6.6 | 81.6 | 67.0 | 72.1 | 64.4 | 61.6 |
| ViTamin-L | 384 | 576 | 12/768 | 12.8+0.2 | 333.7+123.7 | 213.4+6.6 | 81.8 | 67.2 | 72.4 | 64.7 | 61.8 |
| ViTamin-L2 | 224 | 196 | 24/1024 | 12.8 | 333.6+354.0 | 72.6+23.3 | 80.9 | 66.4 | 70.6 | 63.4 | 61.5 |
| ViTamin-L2 | 256 | 256 | 24/1024 | 12.8+0.5 | 333.6+354.0 | 94.8+23.3 | 81.5 | 67.4 | 71.9 | 64.1 | 63.1 |
| ViTamin-L2 | 336 | 441 | 24/1024 | 12.8+0.5 | 333.8+354.0 | 163.4+23.3 | 81.8 | 67.8 | 73.0 | 64.5 | 63.6 |
| ViTamin-L2 | 384 | 576 | 24/1024 | 12.8+0.5 | 334.0+354.0 | 213.4+23.3 | 82.1 | 68.1 | 73.4 | 64.8 | 63.7 |
| ViTamin-XL | 256 | 256 | 27/1152 | 12.8+0.5 | 436.1+488.7 | 125.3+33.1 | 82.1 | 67.6 | 72.3 | 65.4 | 62.7 |
| ViTamin-XL | 384 | 576 | 27/1152 | 12.8+0.5 | 436.1+488.7 | 281.9+33.1 | 82.6 | 68.1 | 73.6 | 65.6 | 63.8 |
| ViTamin-XL | 256 | 256 | 27/1152 | 40 | 436.1+488.7 | 125.3+33.1 | 82.3 | 67.5 | 72.8 | 64.0 | 62.1 |
| ViTamin-XL | 336 | 441 | 27/1152 | 40+1 | 436.1+488.7 | 215.9+33.1 | 82.7 | 68.0 | 73.9 | 64.1 | 62.6 |
| ViTamin-XL | 384 | 576 | 27/1152 | 40+1 | 436.1+488.7 | 281.9+33.1 | 82.9 | 68.1 | 74.1 | 64.0 | 62.5 |
## Main Results on Downstream tasks
**Open-Vocab Detection**
| image encoder | detector | OV-COCO (AP<sub>50</sub><sup>novel</sup>) | OV-LVIS (AP<sub>r</sub>) |
|---------------|----------|---------------------------------------|-----------------------|
| ViT-L/14 | Sliding F-ViT | 36.1 | 32.5 |
| ViTamin-L | Sliding F-ViT | 37.5 | 35.6 |
**Open-Vocab Segmentation**
| image encoder | segmentor | ADE | Cityscapes | MV | A-150 | A-847 | PC-459 | PC-59 | PAS-21 |
|---------------|-------------|----------------|--------------|------|-------|-------|--------|-------|--------------------|
| ViT-L/14 | Sliding FC-CLIP | 24.6 | 40.7 | 16.5 | 31.8 | 14.3 | 18.3 | 55.1 | 81.5 |
| ViTamin-L | Sliding FC-CLIP | 27.3 | 44.0 | 18.2 | 35.6 | 16.1 | 20.4 | 58.4 | 83.4 |
Note: Panoptic dataset (ADE, CityScapes, MV) are with the metric of PQ. Semantic dataset (A-150, A-847, PC-459, PC-59, PAS-21) are with the metric of mIoU.
**Large Multi-modal Models**
| image encoder | image size | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MME | MM-Bench | MM-B-CN | SEED | LLaVA-Wild | MM-Vet |
|---------------|----------|-------|------|--------|------|-------|------|------|----------|---------|------|------------|--------|
| ViTamin-L | 336 | 78.4 | 61.6 | 51.1 | 66.9 | 58.7 | 84.6 | 1421 | 65.4 | 58.4 | 57.7 | 64.5 | 33.6 |
| ViTamin-L | 384 | 78.9 | 61.6 | 55.4 | 67.6 | 59.8 | 85.5 | 1447 | 64.5 | 58.3 | 57.9 | 66.1 | 33.6 |
## Citing ViTamin
```
@inproceedings{chen2024vitamin,
title={ViTamin: Design Scalable Vision Models in the Vision-language Era},
author={Chen, Jieneng and Yu, Qihang and Shen, Xiaohui and Yuille, ALan and Chen, Liang-Chieh},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2024}
}
``` |