--- license: apache-2.0 base_model: openai/whisper-small tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: superb_ks_42 results: - task: name: Audio Classification type: audio-classification dataset: name: superb type: superb config: ks split: validation args: ks metrics: - name: Accuracy type: accuracy value: 0.9848484848484849 --- # superb_ks_42 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0976 - Accuracy: 0.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3599 | 1.0 | 1597 | 0.1546 | 0.9707 | | 0.0819 | 2.0 | 3194 | 0.0998 | 0.9762 | | 0.0635 | 3.0 | 4791 | 0.1049 | 0.9800 | | 0.0437 | 4.0 | 6388 | 0.0905 | 0.9797 | | 0.0411 | 5.0 | 7985 | 0.0898 | 0.9809 | | 0.0283 | 6.0 | 9582 | 0.1006 | 0.9812 | | 0.0229 | 7.0 | 11179 | 0.0976 | 0.9848 | | 0.0186 | 8.0 | 12776 | 0.1143 | 0.9825 | | 0.0094 | 9.0 | 14373 | 0.1136 | 0.9835 | | 0.0066 | 10.0 | 15970 | 0.1172 | 0.9834 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1