--- license: mit base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - accuracy model-index: - name: ddi_42 results: [] --- # ddi_42 This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext](https://huggingface.co./microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3300 - Accuracy: 0.9547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 791 | 0.1947 | 0.9471 | | 0.1709 | 2.0 | 1582 | 0.2474 | 0.9527 | | 0.0734 | 3.0 | 2373 | 0.2485 | 0.9475 | | 0.0475 | 4.0 | 3164 | 0.2686 | 0.9499 | | 0.0475 | 5.0 | 3955 | 0.3196 | 0.9475 | | 0.0284 | 6.0 | 4746 | 0.3014 | 0.9527 | | 0.0194 | 7.0 | 5537 | 0.3125 | 0.9523 | | 0.0133 | 8.0 | 6328 | 0.3641 | 0.9491 | | 0.0065 | 9.0 | 7119 | 0.3300 | 0.9547 | | 0.0065 | 10.0 | 7910 | 0.3502 | 0.9543 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu118 - Datasets 2.18.0 - Tokenizers 0.15.2