--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: output results: [] --- # output This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0837 - Accuracy: 0.9865 - Precision: 0.9937 - Recall: 0.9809 - F1: 0.9873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0168 | 0.1380 | 250 | 0.0997 | 0.9851 | 0.9841 | 0.9881 | 0.9861 | | 0.1 | 0.2759 | 500 | 0.0789 | 0.9873 | 0.9897 | 0.9866 | 0.9881 | | 0.0522 | 0.4139 | 750 | 0.0811 | 0.9870 | 0.9861 | 0.9897 | 0.9879 | | 0.1133 | 0.5519 | 1000 | 0.0837 | 0.9865 | 0.9937 | 0.9809 | 0.9873 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0 - Datasets 3.0.0 - Tokenizers 0.19.1