--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: BERT-political_bias-finetune results: [] --- # BERT-political_bias-finetune This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0945 - Accuracy: 0.9890 - Precision: 0.9962 - Recall: 0.9875 - F1: 0.9918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2651 | 0.1834 | 500 | 0.5210 | 0.8885 | 0.9981 | 0.8363 | 0.9101 | | 0.1807 | 0.3668 | 1000 | 0.1013 | 0.9846 | 0.9913 | 0.9859 | 0.9885 | | 0.0872 | 0.5503 | 1500 | 0.0693 | 0.9879 | 0.9860 | 0.9962 | 0.9911 | | 0.0775 | 0.7337 | 2000 | 0.1155 | 0.9787 | 0.9961 | 0.9723 | 0.9840 | | 0.0751 | 0.9171 | 2500 | 0.0530 | 0.9901 | 0.9945 | 0.9908 | 0.9926 | | 0.033 | 1.1005 | 3000 | 0.0505 | 0.9930 | 0.9956 | 0.9940 | 0.9948 | | 0.0403 | 1.2839 | 3500 | 0.0447 | 0.9905 | 0.9908 | 0.9951 | 0.9929 | | 0.0395 | 1.4674 | 4000 | 0.0857 | 0.9868 | 0.9967 | 0.9837 | 0.9901 | | 0.0077 | 1.6508 | 4500 | 0.0708 | 0.9912 | 0.9903 | 0.9967 | 0.9935 | | 0.0342 | 1.8342 | 5000 | 0.0945 | 0.9890 | 0.9962 | 0.9875 | 0.9918 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1