--- language: - zh license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - formospeech/tat_asr_aligned model-index: - name: Whisper Tiny Taiwanese Android results: [] --- # Whisper Tiny Taiwanese Android This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set: - Loss: 0.6536 - Cer: 10.3016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1362 - training_steps: 13620 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.371 | 0.9985 | 681 | 0.4334 | 14.4492 | | 0.2637 | 1.9971 | 1362 | 0.3950 | 13.0672 | | 0.1725 | 2.9956 | 2043 | 0.3962 | 12.1858 | | 0.1102 | 3.9941 | 2724 | 0.4102 | 11.8710 | | 0.0715 | 4.9927 | 3405 | 0.4442 | 11.9113 | | 0.0467 | 5.9912 | 4086 | 0.4830 | 12.2436 | | 0.0322 | 6.9897 | 4767 | 0.5100 | 11.6466 | | 0.0234 | 7.9883 | 5448 | 0.5315 | 11.5878 | | 0.0182 | 8.9868 | 6129 | 0.5542 | 11.8786 | | 0.012 | 9.9853 | 6810 | 0.5834 | 11.5762 | | 0.0083 | 10.9839 | 7491 | 0.5833 | 11.4945 | | 0.0061 | 11.9824 | 8172 | 0.6000 | 11.1774 | | 0.0045 | 12.9809 | 8853 | 0.6136 | 11.0700 | | 0.0027 | 13.9795 | 9534 | 0.6144 | 10.8808 | | 0.0008 | 14.9780 | 10215 | 0.6320 | 10.6295 | | 0.0006 | 15.9765 | 10896 | 0.6380 | 10.6150 | | 0.0003 | 16.9751 | 11577 | 0.6385 | 10.4755 | | 0.0003 | 17.9736 | 12258 | 0.6498 | 10.4047 | | 0.0001 | 18.9721 | 12939 | 0.6537 | 10.3546 | | 0.0001 | 19.9707 | 13620 | 0.6536 | 10.3016 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1