--- base_model: Qwen/CodeQwen1.5-7B-Chat library_name: peft license: other tags: - axolotl - generated_from_trainer model-index: - name: CodeQwen1.5-7B-Chat-lora8-NLQ2Cypher results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml # base_model: deepseek-ai/deepseek-coder-1.3b-instruct base_model: Qwen/CodeQwen1.5-7B-Chat model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer is_mistral_derived_model: false load_in_8bit: true load_in_4bit: false strict: false lora_fan_in_fan_out: false data_seed: 49 seed: 49 datasets: - path: sample_data/alpaca_synth_cypher.jsonl type: sharegpt conversation: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-alpaca-codeqwen1.5-7b-chat-lora8 # output_dir: ./qlora-alpaca-out hub_model_id: jermyn/CodeQwen1.5-7B-Chat-lora8-NLQ2Cypher # hub_model_id: jermyn/deepseek-code-1.3b-inst-NLQ2Cypher adapter: lora # 'qlora' or leave blank for full finetune lora_model_dir: sequence_len: 896 sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: # lora_target_modules: # - gate_proj # - down_proj # - up_proj # - q_proj # - v_proj # - k_proj # - o_proj # If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens. # For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models. # `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities. # https://github.com/huggingface/peft/issues/334#issuecomment-1561727994 # lora_modules_to_save: # - embed_tokens # - lm_head wandb_project: fine-tune-axolotl wandb_entity: jermyn gradient_accumulation_steps: 2 micro_batch_size: 8 eval_batch_size: 8 num_epochs: 6 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0005 max_grad_norm: 1.0 adam_beta2: 0.95 adam_epsilon: 0.00001 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 # saves_per_epoch: 6 save_steps: 10 save_total_limit: 3 debug: weight_decay: 0.0 fsdp: fsdp_config: # special_tokens: # bos_token: "" # eos_token: "" # unk_token: "" save_safetensors: true ```

[Visualize in Weights & Biases](https://wandb.ai/jermyn/fine-tune-axolotl/runs/jmysluep) # CodeQwen1.5-7B-Chat-lora8-NLQ2Cypher This model is a fine-tuned version of [Qwen/CodeQwen1.5-7B-Chat](https://huggingface.co./Qwen/CodeQwen1.5-7B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3720 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 49 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1649 | 0.1538 | 1 | 0.9270 | | 1.1566 | 0.3077 | 2 | 0.9268 | | 1.0746 | 0.6154 | 4 | 0.8194 | | 0.6428 | 0.9231 | 6 | 0.4970 | | 0.2459 | 1.2308 | 8 | 0.4760 | | 0.3512 | 1.5385 | 10 | 0.5091 | | 0.1654 | 1.8462 | 12 | 0.4742 | | 0.1484 | 2.1538 | 14 | 0.4560 | | 0.137 | 2.4615 | 16 | 0.4105 | | 0.0746 | 2.7692 | 18 | 0.3736 | | 0.0539 | 3.0769 | 20 | 0.3412 | | 0.1147 | 3.3846 | 22 | 0.3307 | | 0.056 | 3.6923 | 24 | 0.3242 | | 0.0767 | 4.0 | 26 | 0.3524 | | 0.0583 | 4.3077 | 28 | 0.3690 | | 0.0666 | 4.6154 | 30 | 0.3727 | | 0.0539 | 4.9231 | 32 | 0.3773 | | 0.0367 | 5.2308 | 34 | 0.3796 | | 0.0297 | 5.5385 | 36 | 0.3720 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1