--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned-ner-increased results: [] --- # bert-base-uncased-finetuned-ner-increased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0064 - Precision: 0.9933 - Recall: 0.9941 - F1: 0.9937 - Accuracy: 0.9981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0102 | 0.9997 | 1562 | 0.0078 | 0.9902 | 0.9925 | 0.9914 | 0.9974 | | 0.0053 | 2.0 | 3125 | 0.0068 | 0.9940 | 0.9926 | 0.9933 | 0.9980 | | 0.0032 | 2.9990 | 4686 | 0.0067 | 0.9942 | 0.9935 | 0.9939 | 0.9982 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1