File size: 17,213 Bytes
9cbaea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
---
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:152151
- loss:HardMultipleNegativesRankingLoss
- loss:CachedMultipleNegativesSymmetricRankingLoss
widget:
- source_sentence: Use arc welding techniques to make welds in conditions of very
    high pressure, usually in an underwater dry chamber such as a diving bell. Compensate
    for the negative consequences of high pressure on a weld, such as the shorter
    and less steady welding arc.
  sentences:
  - skill_skill
  - weld in hyperbaric conditions
  - human-robot collaboration
- source_sentence: Carry out mineral processing operations, which aim to separate
    valuable minerals from waste rock or grout. Oversee and implement processes such
    as samping, analysis and most importantly the electrostatic separation process,
    which separates valuable materials from mineral ore.
  sentences:
  - internet governance
  - implement mineral processes
  - skill_skill
- source_sentence: looking for a pest control technician with strong knowledge in
    preventative measures to minimize pest populations A successful candidate will
    have experience in cryopreservation techniques as well as laboratory protocols
  sentences:
  - cryopreservation
  - food preservation
  - skill_sentence
- source_sentence: Candidates with experience using popular balance sheet software
    are encouraged to apply for our accounting position. We are looking for a cargo
    handling expert who can maximize efficiency on our shipping vessels.
  sentences:
  - skill_sentence
  - perform balance sheet operations
  - promote inclusion
- source_sentence: Must have the ability to read and interpret schematics and effectively
    install and calibrate lift governors to ensure compliance with safety standards.
    The ideal candidate must have an ear for identifying music with commercial potential
    and understand the current market trends.
  sentences:
  - prepare credit reports
  - install lift governor
  - skill_sentence
---

# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) on the skill_sentence and skill_skill datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
- **Maximum Sequence Length:** 96 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - skill_sentence
    - skill_skill
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 96, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): SmartTokenPooling({'word_embedding_dimension': 768, 'window_size': -1})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jensjorisdecorte/ConTeXT-Skill-Extraction-base")
# Run inference
sentences = [
    'Must have the ability to read and interpret schematics and effectively install and calibrate lift governors to ensure compliance with safety standards. The ideal candidate must have an ear for identifying music with commercial potential and understand the current market trends.',
    'install lift governor',
    'skill_sentence',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### skill_sentence

* Dataset: skill_sentence
* Size: 138,260 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>type</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                         | type                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           | string                                                                         |
  | details | <ul><li>min: 9 tokens</li><li>mean: 35.67 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.12 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 5.0 tokens</li><li>max: 5 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                        | positive                                                            | type                        |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|:----------------------------|
  | <code>duties for this role will include conducting water chemistry analysis and managing the laboratory. seeking a seasoned print manufacturing manager with knowledge of printing materials, processes and equipment.</code> | <code>water chemistry analysis</code>                               | <code>skill_sentence</code> |
  | <code>divers must understand how to calculate dive times and limits to ensure they return safely. We are searching for a multimedia software expert with experience in sound, lighting and recording software.</code>         | <code>comply with the planned time for the depth of the dive</code> | <code>skill_sentence</code> |
  | <code>A successful candidate will possess the ability to calibrate laboratory equipment according to industry standards. we are seeking a candidate with experience in preparing government funding dossiers</code>           | <code>prepare government funding dossiers</code>                    | <code>skill_sentence</code> |
* Loss: <code>custom_losses.HardMultipleNegativesRankingLoss</code> with these parameters:
  ```json
  {
      "scale": 20,
      "similarity_fct": "<lambda>"
  }
  ```

#### skill_skill

* Dataset: skill_skill
* Size: 13,891 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>type</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                         | type                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           | string                                                                         |
  | details | <ul><li>min: 6 tokens</li><li>mean: 29.09 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.24 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 5.0 tokens</li><li>max: 5 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                                                                                                                 | positive                               | type                     |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------|:-------------------------|
  | <code>Adapt and move set pieces during rehearsals and live performances.</code>                                                                                                                                                                                                                                        | <code>adapt sets</code>                | <code>skill_skill</code> |
  | <code>Prepare bread and bread products such as sandwiches for consumption.</code>                                                                                                                                                                                                                                      | <code>prepare bread products</code>    | <code>skill_skill</code> |
  | <code>The strategies, methods and techniques that increase the organisation's capacity to protect and sustain the services and operations that fulfil the organisational mission and create lasting values by effectively addressing the combined issues of security, preparedness, risk and disaster recovery.</code> | <code>organisational resilience</code> | <code>skill_skill</code> |
* Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "mini_batch_size": 64
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `overwrite_output_dir`: True
- `eval_strategy`: steps
- `per_device_train_batch_size`: 4096
- `per_device_eval_batch_size`: 4096
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: True
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4096
- `per_device_eval_batch_size`: 4096
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   |
|:----------:|:------:|
| 0.1053     | 4      |
| 0.2105     | 8      |
| 0.3158     | 12     |
| 0.4211     | 16     |
| 0.5263     | 20     |
| 0.6316     | 24     |
| **0.7368** | **28** |
| 0.8421     | 32     |
| 0.9474     | 36     |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.9.19
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu118
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->