File size: 17,213 Bytes
9cbaea1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
---
base_model: sentence-transformers/all-mpnet-base-v2
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:152151
- loss:HardMultipleNegativesRankingLoss
- loss:CachedMultipleNegativesSymmetricRankingLoss
widget:
- source_sentence: Use arc welding techniques to make welds in conditions of very
high pressure, usually in an underwater dry chamber such as a diving bell. Compensate
for the negative consequences of high pressure on a weld, such as the shorter
and less steady welding arc.
sentences:
- skill_skill
- weld in hyperbaric conditions
- human-robot collaboration
- source_sentence: Carry out mineral processing operations, which aim to separate
valuable minerals from waste rock or grout. Oversee and implement processes such
as samping, analysis and most importantly the electrostatic separation process,
which separates valuable materials from mineral ore.
sentences:
- internet governance
- implement mineral processes
- skill_skill
- source_sentence: looking for a pest control technician with strong knowledge in
preventative measures to minimize pest populations A successful candidate will
have experience in cryopreservation techniques as well as laboratory protocols
sentences:
- cryopreservation
- food preservation
- skill_sentence
- source_sentence: Candidates with experience using popular balance sheet software
are encouraged to apply for our accounting position. We are looking for a cargo
handling expert who can maximize efficiency on our shipping vessels.
sentences:
- skill_sentence
- perform balance sheet operations
- promote inclusion
- source_sentence: Must have the ability to read and interpret schematics and effectively
install and calibrate lift governors to ensure compliance with safety standards.
The ideal candidate must have an ear for identifying music with commercial potential
and understand the current market trends.
sentences:
- prepare credit reports
- install lift governor
- skill_sentence
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) on the skill_sentence and skill_skill datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
- **Maximum Sequence Length:** 96 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- skill_sentence
- skill_skill
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 96, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): SmartTokenPooling({'word_embedding_dimension': 768, 'window_size': -1})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jensjorisdecorte/ConTeXT-Skill-Extraction-base")
# Run inference
sentences = [
'Must have the ability to read and interpret schematics and effectively install and calibrate lift governors to ensure compliance with safety standards. The ideal candidate must have an ear for identifying music with commercial potential and understand the current market trends.',
'install lift governor',
'skill_sentence',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### skill_sentence
* Dataset: skill_sentence
* Size: 138,260 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>type</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | type |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 35.67 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.12 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 5.0 tokens</li><li>max: 5 tokens</li></ul> |
* Samples:
| anchor | positive | type |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|:----------------------------|
| <code>duties for this role will include conducting water chemistry analysis and managing the laboratory. seeking a seasoned print manufacturing manager with knowledge of printing materials, processes and equipment.</code> | <code>water chemistry analysis</code> | <code>skill_sentence</code> |
| <code>divers must understand how to calculate dive times and limits to ensure they return safely. We are searching for a multimedia software expert with experience in sound, lighting and recording software.</code> | <code>comply with the planned time for the depth of the dive</code> | <code>skill_sentence</code> |
| <code>A successful candidate will possess the ability to calibrate laboratory equipment according to industry standards. we are seeking a candidate with experience in preparing government funding dossiers</code> | <code>prepare government funding dossiers</code> | <code>skill_sentence</code> |
* Loss: <code>custom_losses.HardMultipleNegativesRankingLoss</code> with these parameters:
```json
{
"scale": 20,
"similarity_fct": "<lambda>"
}
```
#### skill_skill
* Dataset: skill_skill
* Size: 13,891 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>type</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | type |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 29.09 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.24 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 5.0 tokens</li><li>max: 5 tokens</li></ul> |
* Samples:
| anchor | positive | type |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------|:-------------------------|
| <code>Adapt and move set pieces during rehearsals and live performances.</code> | <code>adapt sets</code> | <code>skill_skill</code> |
| <code>Prepare bread and bread products such as sandwiches for consumption.</code> | <code>prepare bread products</code> | <code>skill_skill</code> |
| <code>The strategies, methods and techniques that increase the organisation's capacity to protect and sustain the services and operations that fulfil the organisational mission and create lasting values by effectively addressing the combined issues of security, preparedness, risk and disaster recovery.</code> | <code>organisational resilience</code> | <code>skill_skill</code> |
* Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 64
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `overwrite_output_dir`: True
- `eval_strategy`: steps
- `per_device_train_batch_size`: 4096
- `per_device_eval_batch_size`: 4096
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: True
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4096
- `per_device_eval_batch_size`: 4096
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step |
|:----------:|:------:|
| 0.1053 | 4 |
| 0.2105 | 8 |
| 0.3158 | 12 |
| 0.4211 | 16 |
| 0.5263 | 20 |
| 0.6316 | 24 |
| **0.7368** | **28** |
| 0.8421 | 32 |
| 0.9474 | 36 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.9.19
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu118
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |