--- library_name: transformers datasets: - jeanflop/post_ocr_correction-512 language: - fr - en base_model: - google/flan-t5-large license: apache-2.0 pipeline_tag: text-generation --- ## **Ocr Correcteur v1** ![image/jpeg](https://huggingface.co./jeanflop/ocr_correcteur-v1/resolve/main/an-illustration-of-a-superhero-with-a-smiley-face--R5MceaXPSHOnN5fLITavoQ-zUPTdsBuQKSJyWZmx7sdXw.jpeg) This model lora weight has been finetune on french OCR dataset. The architecture used is Flan T large. On a sample of 1000. More stong model is under cooks. * **Install dependencies** ```bash !pip install -q transformers accelerate peft diffusers !pip install -U bitsandbytes ``` * **Load and merge adaptaters in 8Bit** (recommanded) ```python import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForSeq2SeqLM, AutoTokenizer,BitsAndBytesConfig # Load peft config for pre-trained checkpoint etc. peft_model_id = "jeanflop/ocr_correcteur-v1" config = PeftConfig.from_pretrained(peft_model_id) # load base LLM model and tokenizer peft_model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, load_in_8bit=True, device_map={"":1}) peft_tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-large') # Load the Lora model peft_model = PeftModel.from_pretrained(peft_model, peft_model_id, device_map={"":1}) # model.eval() print("Peft model loaded") ``` * **Run inference** (recommanded) Add your text ```python inputs=f""" Fix text : {text}""" ``` Run ```python peft_model.config.max_length=512 peft_tokenizer.model_max_length=512 inputs = peft_tokenizer(inputs, return_tensors="pt") outputs = peft_model.generate(**inputs,max_length=512) answer = peft_tokenizer.decode(outputs[0]) from textwrap import fill print(fill(answer, width=80)) ```