Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,60 @@
|
|
2 |
library_name: transformers
|
3 |
datasets:
|
4 |
- jeanflop/post_ocr_correction-512
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
|
8 |
-
This model has been finetune on french OCR dataset. The architecture used is Flan T large. On a sample of 1000. More stong model is under cooks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
datasets:
|
4 |
- jeanflop/post_ocr_correction-512
|
5 |
+
language:
|
6 |
+
- fr
|
7 |
+
- en
|
8 |
+
base_model:
|
9 |
+
- google/flan-t5-large
|
10 |
---
|
11 |
|
12 |
|
13 |
+
This model lora weight has been finetune on french OCR dataset. The architecture used is Flan T large. On a sample of 1000. More stong model is under cooks.
|
14 |
+
|
15 |
+
* **Install dependencies**
|
16 |
+
|
17 |
+
```bash
|
18 |
+
!pip install -q transformers accelerate peft diffusers
|
19 |
+
```
|
20 |
+
* **Load and merge adaptaters in 8Bit** (recommanded)
|
21 |
+
|
22 |
+
```
|
23 |
+
import torch
|
24 |
+
from peft import PeftModel, PeftConfig
|
25 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer,BitsAndBytesConfig
|
26 |
+
|
27 |
+
# Load peft config for pre-trained checkpoint etc.
|
28 |
+
peft_model_id = "jeanflop/ocr_correcteur-v1"
|
29 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
30 |
+
|
31 |
+
# load base LLM model and tokenizer
|
32 |
+
peft_model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, load_in_8bit=True, device_map={"":1})
|
33 |
+
peft_tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-large')
|
34 |
+
|
35 |
+
# Load the Lora model
|
36 |
+
peft_model = PeftModel.from_pretrained(peft_model, peft_model_id, device_map={"":1})
|
37 |
+
# model.eval()
|
38 |
+
|
39 |
+
print("Peft model loaded")
|
40 |
+
```
|
41 |
+
* **Run inference** (recommanded)
|
42 |
+
|
43 |
+
Add your text
|
44 |
+
|
45 |
+
```
|
46 |
+
inputs=f"""
|
47 |
+
Fix text : {text}"""
|
48 |
+
```
|
49 |
+
Run
|
50 |
+
```
|
51 |
+
peft_model.config.max_length=512
|
52 |
+
peft_tokenizer.model_max_length=512
|
53 |
+
inputs = peft_tokenizer(inputs, return_tensors="pt")
|
54 |
+
outputs = peft_model.generate(**inputs,max_length=512)
|
55 |
+
answer = tokenizer.decode(outputs[0])
|
56 |
+
from textwrap import fill
|
57 |
+
|
58 |
+
print(fill(answer, width=80))
|
59 |
+
```
|
60 |
+
|
61 |
+
|