--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: results_bert_full results: [] --- # results_bert_full This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5038 - Accuracy: 0.876 - F1: 0.8654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4682 | 1.0 | 500 | 0.3929 | 0.838 | 0.8325 | | 0.4017 | 2.0 | 1000 | 0.4347 | 0.833 | 0.7715 | | 0.3825 | 3.0 | 1500 | 0.6541 | 0.779 | 0.7984 | | 0.3609 | 4.0 | 2000 | 0.4493 | 0.851 | 0.8484 | | 0.3404 | 5.0 | 2500 | 0.4276 | 0.843 | 0.7941 | | 0.3184 | 6.0 | 3000 | 0.3935 | 0.864 | 0.8509 | | 0.2792 | 7.0 | 3500 | 0.3839 | 0.867 | 0.8519 | | 0.2919 | 8.0 | 4000 | 0.5530 | 0.855 | 0.8216 | | 0.2404 | 9.0 | 4500 | 0.5326 | 0.865 | 0.8603 | | 0.2139 | 10.0 | 5000 | 0.5038 | 0.876 | 0.8654 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0