Create handler.py
Browse files- handler.py +134 -0
handler.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any, Union, List
|
2 |
+
import torch
|
3 |
+
from diffusers import (
|
4 |
+
CogVideoXPipeline,
|
5 |
+
CogVideoXDPMScheduler,
|
6 |
+
CogVideoXVideoToVideoPipeline,
|
7 |
+
CogVideoXImageToVideoPipeline
|
8 |
+
)
|
9 |
+
from diffusers.utils import load_video, load_image
|
10 |
+
from PIL import Image
|
11 |
+
import base64
|
12 |
+
import io
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
class EndpointHandler:
|
16 |
+
def __init__(self, path: str = ""):
|
17 |
+
"""Initialize the CogVideoX pipeline.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
path (str): Path to the model weights
|
21 |
+
"""
|
22 |
+
# Initialize pipeline with bfloat16 for optimal performance as recommended in docs
|
23 |
+
self.pipe = CogVideoXPipeline.from_pretrained(
|
24 |
+
path or "THUDM/CogVideoX-5b",
|
25 |
+
torch_dtype=torch.bfloat16
|
26 |
+
).to("cuda")
|
27 |
+
|
28 |
+
# Set up the scheduler with trailing timesteps as shown in example
|
29 |
+
self.pipe.scheduler = CogVideoXDPMScheduler.from_config(
|
30 |
+
self.pipe.scheduler.config,
|
31 |
+
timestep_spacing="trailing"
|
32 |
+
)
|
33 |
+
|
34 |
+
# Initialize video-to-video pipeline
|
35 |
+
self.pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained(
|
36 |
+
path or "THUDM/CogVideoX-5b",
|
37 |
+
transformer=self.pipe.transformer,
|
38 |
+
vae=self.pipe.vae,
|
39 |
+
scheduler=self.pipe.scheduler,
|
40 |
+
tokenizer=self.pipe.tokenizer,
|
41 |
+
text_encoder=self.pipe.text_encoder,
|
42 |
+
torch_dtype=torch.bfloat16
|
43 |
+
).to("cuda")
|
44 |
+
|
45 |
+
# Initialize image-to-video pipeline
|
46 |
+
self.pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
|
47 |
+
path or "THUDM/CogVideoX-5b-I2V",
|
48 |
+
vae=self.pipe.vae,
|
49 |
+
scheduler=self.pipe.scheduler,
|
50 |
+
tokenizer=self.pipe.tokenizer,
|
51 |
+
text_encoder=self.pipe.text_encoder,
|
52 |
+
torch_dtype=torch.bfloat16
|
53 |
+
).to("cuda")
|
54 |
+
|
55 |
+
def _decode_base64_to_image(self, base64_string: str) -> Image.Image:
|
56 |
+
"""Convert base64 string to PIL Image."""
|
57 |
+
image_data = base64.b64decode(base64_string)
|
58 |
+
image = Image.open(io.BytesIO(image_data))
|
59 |
+
return image
|
60 |
+
|
61 |
+
def _encode_video_to_base64(self, video_frames: List[np.ndarray]) -> str:
|
62 |
+
"""Convert video frames to base64 string."""
|
63 |
+
# Convert frames to a video file in memory
|
64 |
+
import imageio
|
65 |
+
output_bytes = io.BytesIO()
|
66 |
+
imageio.mimsave(output_bytes, video_frames, format='mp4', fps=8)
|
67 |
+
return base64.b64encode(output_bytes.getvalue()).decode('utf-8')
|
68 |
+
|
69 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
70 |
+
"""Process the input data and generate video using CogVideoX.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
data (Dict[str, Any]): Input data containing:
|
74 |
+
- prompt (str): Text prompt for generation
|
75 |
+
- image (str, optional): Base64 encoded image for image-to-video
|
76 |
+
- video (str, optional): Base64 encoded video for video-to-video
|
77 |
+
- num_inference_steps (int, optional): Number of inference steps
|
78 |
+
- guidance_scale (float, optional): Guidance scale for generation
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
Dict[str, Any]: Generated video as base64 string
|
82 |
+
"""
|
83 |
+
# Extract parameters from input
|
84 |
+
prompt = data.get("prompt", "")
|
85 |
+
num_inference_steps = data.get("num_inference_steps", 50)
|
86 |
+
guidance_scale = data.get("guidance_scale", 7.0)
|
87 |
+
|
88 |
+
# Set up generation parameters
|
89 |
+
generation_kwargs = {
|
90 |
+
"prompt": prompt,
|
91 |
+
"num_inference_steps": num_inference_steps,
|
92 |
+
"guidance_scale": guidance_scale,
|
93 |
+
"num_videos_per_prompt": 1,
|
94 |
+
"use_dynamic_cfg": True,
|
95 |
+
"output_type": "np", # Get numpy array output
|
96 |
+
}
|
97 |
+
|
98 |
+
# Handle different input types
|
99 |
+
if "image" in data:
|
100 |
+
# Image to video generation
|
101 |
+
input_image = self._decode_base64_to_image(data["image"])
|
102 |
+
input_image = input_image.resize((720, 480)) # Resize as per example
|
103 |
+
image = load_image(input_image)
|
104 |
+
video_frames = self.pipe_image(
|
105 |
+
image=image,
|
106 |
+
**generation_kwargs
|
107 |
+
).frames[0]
|
108 |
+
|
109 |
+
elif "video" in data:
|
110 |
+
# Video to video generation
|
111 |
+
# TODO: Implement video loading from base64
|
112 |
+
# For now, returning error
|
113 |
+
return {"error": "Video to video generation not yet implemented"}
|
114 |
+
|
115 |
+
else:
|
116 |
+
# Text to video generation
|
117 |
+
generation_kwargs["num_frames"] = 49 # As per example
|
118 |
+
video_frames = self.pipe(**generation_kwargs).frames[0]
|
119 |
+
|
120 |
+
# Convert output to base64
|
121 |
+
video_base64 = self._encode_video_to_base64(video_frames)
|
122 |
+
|
123 |
+
return {
|
124 |
+
"video": video_base64
|
125 |
+
}
|
126 |
+
|
127 |
+
def cleanup(self):
|
128 |
+
"""Cleanup the model and free GPU memory."""
|
129 |
+
# Move models to CPU to free GPU memory
|
130 |
+
self.pipe.to("cpu")
|
131 |
+
self.pipe_video.to("cpu")
|
132 |
+
self.pipe_image.to("cpu")
|
133 |
+
# Clear CUDA cache
|
134 |
+
torch.cuda.empty_cache()
|