--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: None args: all metrics: - name: Accuracy type: accuracy value: 0.91 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co./MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5071 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6259 | 1.0 | 112 | 0.7596 | 0.72 | | 0.9466 | 2.0 | 225 | 0.6318 | 0.79 | | 0.349 | 3.0 | 337 | 0.6183 | 0.84 | | 0.1775 | 4.0 | 450 | 0.6978 | 0.83 | | 0.0076 | 5.0 | 562 | 0.6868 | 0.85 | | 0.0062 | 6.0 | 675 | 0.4879 | 0.88 | | 0.0102 | 7.0 | 787 | 0.7735 | 0.85 | | 0.0002 | 8.0 | 900 | 0.6003 | 0.9 | | 0.0001 | 9.0 | 1012 | 0.4694 | 0.92 | | 0.0001 | 10.0 | 1125 | 0.4915 | 0.91 | | 0.0001 | 11.0 | 1237 | 0.4791 | 0.91 | | 0.0001 | 12.0 | 1350 | 0.5129 | 0.91 | | 0.0001 | 13.0 | 1462 | 0.5055 | 0.91 | | 0.0001 | 14.0 | 1575 | 0.4978 | 0.91 | | 0.0 | 14.93 | 1680 | 0.5071 | 0.91 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.1