--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: google-vit-base-patch16-224-face results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7248574809078198 - name: Precision type: precision value: 0.717172031675939 - name: Recall type: recall value: 0.7248574809078198 - name: F1 type: f1 value: 0.7195690317790054 --- # google-vit-base-patch16-224-face This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4531 - Accuracy: 0.7249 - Precision: 0.7172 - Recall: 0.7249 - F1: 0.7196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8514 | 1.0 | 290 | 0.8464 | 0.7048 | 0.7035 | 0.7048 | 0.6909 | | 0.7202 | 2.0 | 580 | 0.7791 | 0.7283 | 0.7297 | 0.7283 | 0.7111 | | 0.5455 | 3.0 | 870 | 0.7950 | 0.7285 | 0.7174 | 0.7285 | 0.7171 | | 0.334 | 4.0 | 1160 | 0.8948 | 0.7155 | 0.7152 | 0.7155 | 0.7145 | | 0.1644 | 5.0 | 1450 | 1.0820 | 0.7239 | 0.7189 | 0.7239 | 0.7194 | | 0.0482 | 6.0 | 1740 | 1.2792 | 0.7204 | 0.7144 | 0.7204 | 0.7160 | | 0.0236 | 7.0 | 2030 | 1.4162 | 0.7279 | 0.7195 | 0.7279 | 0.7209 | | 0.0049 | 8.0 | 2320 | 1.4531 | 0.7249 | 0.7172 | 0.7249 | 0.7196 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1