paul
commited on
Commit
·
d4a67db
1
Parent(s):
884b0dc
update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
-
value: 0.
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
-
value: 0.
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
-
value: 0.
|
34 |
- name: F1
|
35 |
type: f1
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 1.
|
47 |
-
- Accuracy: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -81,14 +81,14 @@ The following hyperparameters were used during training:
|
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
|
93 |
|
94 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
+
value: 0.7248574809078198
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
+
value: 0.717172031675939
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
+
value: 0.7248574809078198
|
34 |
- name: F1
|
35 |
type: f1
|
36 |
+
value: 0.7195690317790054
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 1.4531
|
47 |
+
- Accuracy: 0.7249
|
48 |
+
- Precision: 0.7172
|
49 |
+
- Recall: 0.7249
|
50 |
+
- F1: 0.7196
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
+
| 0.8514 | 1.0 | 290 | 0.8464 | 0.7048 | 0.7035 | 0.7048 | 0.6909 |
|
85 |
+
| 0.7202 | 2.0 | 580 | 0.7791 | 0.7283 | 0.7297 | 0.7283 | 0.7111 |
|
86 |
+
| 0.5455 | 3.0 | 870 | 0.7950 | 0.7285 | 0.7174 | 0.7285 | 0.7171 |
|
87 |
+
| 0.334 | 4.0 | 1160 | 0.8948 | 0.7155 | 0.7152 | 0.7155 | 0.7145 |
|
88 |
+
| 0.1644 | 5.0 | 1450 | 1.0820 | 0.7239 | 0.7189 | 0.7239 | 0.7194 |
|
89 |
+
| 0.0482 | 6.0 | 1740 | 1.2792 | 0.7204 | 0.7144 | 0.7204 | 0.7160 |
|
90 |
+
| 0.0236 | 7.0 | 2030 | 1.4162 | 0.7279 | 0.7195 | 0.7279 | 0.7209 |
|
91 |
+
| 0.0049 | 8.0 | 2320 | 1.4531 | 0.7249 | 0.7172 | 0.7249 | 0.7196 |
|
92 |
|
93 |
|
94 |
### Framework versions
|