paul
commited on
Commit
·
3eb6f17
1
Parent(s):
ae82612
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: google-vit-base-patch16-224-cartoon-emotion-detection
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Image Classification
|
17 |
+
type: image-classification
|
18 |
+
dataset:
|
19 |
+
name: imagefolder
|
20 |
+
type: imagefolder
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8715596330275229
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.8725197999744695
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.8715596330275229
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.871683140929764
|
35 |
+
---
|
36 |
+
|
37 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
38 |
+
should probably proofread and complete it, then remove this comment. -->
|
39 |
+
|
40 |
+
# google-vit-base-patch16-224-cartoon-emotion-detection
|
41 |
+
|
42 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
43 |
+
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 0.4170
|
45 |
+
- Accuracy: 0.8716
|
46 |
+
- Precision: 0.8725
|
47 |
+
- Recall: 0.8716
|
48 |
+
- F1: 0.8717
|
49 |
+
|
50 |
+
## Model description
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Intended uses & limitations
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Training and evaluation data
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training procedure
|
63 |
+
|
64 |
+
### Training hyperparameters
|
65 |
+
|
66 |
+
The following hyperparameters were used during training:
|
67 |
+
- learning_rate: 0.00012
|
68 |
+
- train_batch_size: 64
|
69 |
+
- eval_batch_size: 64
|
70 |
+
- seed: 42
|
71 |
+
- gradient_accumulation_steps: 4
|
72 |
+
- total_train_batch_size: 256
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- lr_scheduler_warmup_ratio: 0.1
|
76 |
+
- num_epochs: 20
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
82 |
+
| No log | 0.97 | 8 | 1.0942 | 0.5780 | 0.6102 | 0.5780 | 0.5496 |
|
83 |
+
| 1.3198 | 1.97 | 16 | 0.6914 | 0.7615 | 0.7498 | 0.7615 | 0.7493 |
|
84 |
+
| 0.6694 | 2.97 | 24 | 0.4702 | 0.7890 | 0.7808 | 0.7890 | 0.7781 |
|
85 |
+
| 0.2725 | 3.97 | 32 | 0.3957 | 0.8532 | 0.8514 | 0.8532 | 0.8522 |
|
86 |
+
| 0.1116 | 4.97 | 40 | 0.3428 | 0.8716 | 0.8697 | 0.8716 | 0.8693 |
|
87 |
+
| 0.1116 | 5.97 | 48 | 0.3865 | 0.8532 | 0.8514 | 0.8532 | 0.8522 |
|
88 |
+
| 0.0486 | 6.97 | 56 | 0.3445 | 0.8532 | 0.8495 | 0.8532 | 0.8507 |
|
89 |
+
| 0.0346 | 7.97 | 64 | 0.3554 | 0.8807 | 0.8921 | 0.8807 | 0.8831 |
|
90 |
+
| 0.0304 | 8.97 | 72 | 0.3100 | 0.8624 | 0.8592 | 0.8624 | 0.8605 |
|
91 |
+
| 0.0215 | 9.97 | 80 | 0.3718 | 0.8716 | 0.8700 | 0.8716 | 0.8707 |
|
92 |
+
| 0.0215 | 10.97 | 88 | 0.3946 | 0.8899 | 0.8901 | 0.8899 | 0.8896 |
|
93 |
+
| 0.0201 | 11.97 | 96 | 0.4505 | 0.8532 | 0.8558 | 0.8532 | 0.8524 |
|
94 |
+
| 0.02 | 12.97 | 104 | 0.4543 | 0.8716 | 0.8734 | 0.8716 | 0.8718 |
|
95 |
+
| 0.0181 | 13.97 | 112 | 0.3837 | 0.8899 | 0.8878 | 0.8899 | 0.8884 |
|
96 |
+
| 0.0158 | 14.97 | 120 | 0.3904 | 0.8716 | 0.8676 | 0.8716 | 0.8691 |
|
97 |
+
| 0.0158 | 15.97 | 128 | 0.3881 | 0.9083 | 0.9078 | 0.9083 | 0.9077 |
|
98 |
+
| 0.0147 | 16.97 | 136 | 0.4233 | 0.8807 | 0.8773 | 0.8807 | 0.8785 |
|
99 |
+
| 0.0138 | 17.97 | 144 | 0.4335 | 0.8716 | 0.8700 | 0.8716 | 0.8707 |
|
100 |
+
| 0.0166 | 18.97 | 152 | 0.4492 | 0.8716 | 0.8690 | 0.8716 | 0.8701 |
|
101 |
+
| 0.016 | 19.97 | 160 | 0.4170 | 0.8716 | 0.8725 | 0.8716 | 0.8717 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.18.0
|
107 |
+
- Pytorch 1.13.1+cu117
|
108 |
+
- Datasets 2.6.1
|
109 |
+
- Tokenizers 0.11.0
|