--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-atco2-asr results: [] --- # whisper-large-v3-atco2-asr This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7578 - Wer: 29.0480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 2800 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1323 | 3.57 | 100 | 0.5386 | 20.4626 | | 0.0207 | 7.14 | 200 | 0.5952 | 40.3025 | | 0.0125 | 10.71 | 300 | 0.5767 | 25.9342 | | 0.0056 | 14.29 | 400 | 0.6133 | 20.6406 | | 0.0022 | 17.86 | 500 | 0.6367 | 30.2936 | | 0.0005 | 21.43 | 600 | 0.6670 | 21.6637 | | 0.0002 | 25.0 | 700 | 0.6841 | 22.2420 | | 0.0002 | 28.57 | 800 | 0.6948 | 23.4431 | | 0.0001 | 32.14 | 900 | 0.7026 | 23.6210 | | 0.0001 | 35.71 | 1000 | 0.7095 | 26.0676 | | 0.0001 | 39.29 | 1100 | 0.7153 | 25.9786 | | 0.0001 | 42.86 | 1200 | 0.7202 | 25.1335 | | 0.0001 | 46.43 | 1300 | 0.7251 | 25.3559 | | 0.0001 | 50.0 | 1400 | 0.7295 | 29.4929 | | 0.0001 | 53.57 | 1500 | 0.7334 | 25.9786 | | 0.0001 | 57.14 | 1600 | 0.7373 | 28.6032 | | 0.0001 | 60.71 | 1700 | 0.7402 | 28.9146 | | 0.0 | 64.29 | 1800 | 0.7427 | 29.4484 | | 0.0001 | 67.86 | 1900 | 0.7461 | 29.4484 | | 0.0 | 71.43 | 2000 | 0.7480 | 32.2509 | | 0.0 | 75.0 | 2100 | 0.7505 | 32.2064 | | 0.0001 | 78.57 | 2200 | 0.7524 | 32.2064 | | 0.0 | 82.14 | 2300 | 0.7539 | 32.2509 | | 0.0 | 85.71 | 2400 | 0.7549 | 32.3843 | | 0.0 | 89.29 | 2500 | 0.7563 | 32.2954 | | 0.0 | 92.86 | 2600 | 0.7573 | 32.3399 | | 0.0 | 96.43 | 2700 | 0.7578 | 29.0480 | | 0.0 | 100.0 | 2800 | 0.7578 | 29.0480 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2