--- license: apache-2.0 tags: - generated_from_trainer datasets: - jxner metrics: - precision - recall - f1 - accuracy model-index: - name: medicine-ner results: - task: name: Token Classification type: token-classification dataset: name: jxner type: jxner config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.0 - name: Recall type: recall value: 0.0 - name: F1 type: f1 value: 0.0 - name: Accuracy type: accuracy value: 0.859375 --- # medicine-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the jxner dataset. It achieves the following results on the evaluation set: - Loss: 0.7996 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.8594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 1 | 0.8644 | 0.0 | 0.0 | 0.0 | 0.8594 | | No log | 2.0 | 2 | 0.7996 | 0.0 | 0.0 | 0.0 | 0.8594 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2