File size: 2,319 Bytes
040d602
 
 
 
 
 
 
 
 
 
 
7bd8b2b
040d602
ddfd79a
040d602
 
 
 
 
 
ddfd79a
 
040d602
 
 
 
 
 
 
 
 
 
bb1931b
040d602
 
 
 
 
 
 
 
 
 
ddfd79a
040d602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb1931b
040d602
 
 
 
 
 
bb1931b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-meidum-ko-normalized-1273h
  results: []
---

# whisper-medium-ko-normalized-1273h

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on a custom dataset for improving Korean speech recognition.
It achieves the following results on the evaluation set:
- Loss: 0.1254
- Wer: 0.0551

## Model description

The model was a fine-tuned version of `openai/whisper-medium` transcript the Korean audio sources into text.
It was trained on GCP's `a2-highgpu-1g` (a100-40G) for 26 hours with about $90.

## Intended uses & limitations

This model was trained to extend the performance of the original whisper model for Korean transcription task.

## Training and evaluation data

I downloaded all data from AI-HUB (https://aihub.or.kr/). Two datasets, in particular, caught my attention: "Instruction Audio Set" and "Noisy Conversation Audio Set". 
Following indicates the hours information for each dastset.

|dataset name| train_split (hours) | validation_split (hours)|
|---|---|---|
|Instruction Audio Set|910|105|
|Noisy Conversation Audio Set|363|76|

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.0588        | 1.0   | 8775  | 0.1225          | 0.0604 |
| 0.0287        | 2.0   | 17550 | 0.1186          | 0.0567 |
| 0.0148        | 3.0   | 26325 | 0.1254          | 0.0551 |



### Framework versions

- Transformers 4.28.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.11.0
- Tokenizers 0.13.2

## Evaluation Result for the dataset `google/fleurs`

The trained model is evaluated on the `test` split of subset `ko_kr` from the dataset `google/fleurs`.
Please note that the model was not trained on the `train` split from the dataset.

|model|Wer|
|---|---|
|openai/whisper|0.2469|
|this model|0.2189|