--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer metrics: - f1 model-index: - name: refine-good-name-xlm-roberta results: [] --- # refine-good-name-xlm-roberta This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co./xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2236 - F1: 0.8688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2618 | 1.0 | 553 | 0.2357 | 0.8314 | | 0.2025 | 2.0 | 1106 | 0.2209 | 0.8661 | | 0.186 | 3.0 | 1659 | 0.2075 | 0.8588 | | 0.162 | 4.0 | 2212 | 0.2234 | 0.8609 | | 0.1428 | 5.0 | 2765 | 0.2233 | 0.8700 | | 0.1328 | 6.0 | 3318 | 0.2236 | 0.8688 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.0 - Datasets 2.14.0 - Tokenizers 0.13.3