from typing import List, Tuple import torch import torchaudio from torch import nn from vocos.modules import safe_log class MelSpecReconstructionLoss(nn.Module): """ L1 distance between the mel-scaled magnitude spectrograms of the ground truth sample and the generated sample """ def __init__( self, sample_rate: int = 24000, n_fft: int = 1024, hop_length: int = 256, n_mels: int = 100, ): super().__init__() self.mel_spec = torchaudio.transforms.MelSpectrogram( sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels, center=True, power=1, ) def forward(self, y_hat, y) -> torch.Tensor: """ Args: y_hat (Tensor): Predicted audio waveform. y (Tensor): Ground truth audio waveform. Returns: Tensor: L1 loss between the mel-scaled magnitude spectrograms. """ mel_hat = safe_log(self.mel_spec(y_hat)) mel = safe_log(self.mel_spec(y)) loss = torch.nn.functional.l1_loss(mel, mel_hat) return loss class GeneratorLoss(nn.Module): """ Generator Loss module. Calculates the loss for the generator based on discriminator outputs. """ def forward(self, disc_outputs: List[torch.Tensor]) -> Tuple[torch.Tensor, List[torch.Tensor]]: """ Args: disc_outputs (List[Tensor]): List of discriminator outputs. Returns: Tuple[Tensor, List[Tensor]]: Tuple containing the total loss and a list of loss values from the sub-discriminators """ loss = torch.zeros(1, device=disc_outputs[0].device, dtype=disc_outputs[0].dtype) gen_losses = [] for dg in disc_outputs: l = torch.mean(torch.clamp(1 - dg, min=0)) gen_losses.append(l) loss += l return loss, gen_losses class DiscriminatorLoss(nn.Module): """ Discriminator Loss module. Calculates the loss for the discriminator based on real and generated outputs. """ def forward( self, disc_real_outputs: List[torch.Tensor], disc_generated_outputs: List[torch.Tensor] ) -> Tuple[torch.Tensor, List[torch.Tensor], List[torch.Tensor]]: """ Args: disc_real_outputs (List[Tensor]): List of discriminator outputs for real samples. disc_generated_outputs (List[Tensor]): List of discriminator outputs for generated samples. Returns: Tuple[Tensor, List[Tensor], List[Tensor]]: A tuple containing the total loss, a list of loss values from the sub-discriminators for real outputs, and a list of loss values for generated outputs. """ loss = torch.zeros(1, device=disc_real_outputs[0].device, dtype=disc_real_outputs[0].dtype) r_losses = [] g_losses = [] for dr, dg in zip(disc_real_outputs, disc_generated_outputs): r_loss = torch.mean(torch.clamp(1 - dr, min=0)) g_loss = torch.mean(torch.clamp(1 + dg, min=0)) loss += r_loss + g_loss r_losses.append(r_loss) g_losses.append(g_loss) return loss, r_losses, g_losses class FeatureMatchingLoss(nn.Module): """ Feature Matching Loss module. Calculates the feature matching loss between feature maps of the sub-discriminators. """ def forward(self, fmap_r: List[List[torch.Tensor]], fmap_g: List[List[torch.Tensor]]) -> torch.Tensor: """ Args: fmap_r (List[List[Tensor]]): List of feature maps from real samples. fmap_g (List[List[Tensor]]): List of feature maps from generated samples. Returns: Tensor: The calculated feature matching loss. """ loss = torch.zeros(1, device=fmap_r[0][0].device, dtype=fmap_r[0][0].dtype) for dr, dg in zip(fmap_r, fmap_g): for rl, gl in zip(dr, dg): loss += torch.mean(torch.abs(rl - gl)) return loss