Commit
·
a721832
1
Parent(s):
4fb705d
update pycache and model paths
Browse files- .gitignore +1 -0
- models/soundstream_hubert_new.py +28 -24
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
**__pycache__**
|
models/soundstream_hubert_new.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
|
3 |
from typing import Sequence, Optional, Union
|
4 |
import sys
|
@@ -28,19 +28,19 @@ import descriptaudiocodec.dac.model.dac as dac2
|
|
28 |
def get_model_size(model):
|
29 |
# 计算总参数数
|
30 |
total_params = sum(p.numel() for p in model.parameters())
|
31 |
-
|
32 |
# 假设每个参数都是32位浮点数,计算模型大小(以字节为单位)
|
33 |
model_size_bytes = total_params # 每个参数4字节
|
34 |
-
|
35 |
# 转换为更易读的单位(例如,MB)
|
36 |
model_size_mb = model_size_bytes / (1024 ** 2)
|
37 |
-
|
38 |
return total_params, model_size_mb
|
39 |
|
40 |
|
41 |
class SoundStream(nn.Module):
|
42 |
""" SoundStream model or EnCodec model.
|
43 |
-
|
44 |
Args:
|
45 |
n_filters (int): n_filters (int): Base width for the model.
|
46 |
D (int): Intermediate representation dimension.
|
@@ -82,7 +82,7 @@ class SoundStream(nn.Module):
|
|
82 |
# out_D=D+768
|
83 |
self.quantizer = ResidualVectorQuantizer(dimension=D+768, n_q=n_q, bins=bins)
|
84 |
# Decoder model
|
85 |
-
|
86 |
# self.decoder = SEANetDecoder(n_filters= n_filters, dimension=D, ratios=ratios, causal=causal)
|
87 |
self.decoder_2 = dac2.Decoder( D,1024,ratios,)
|
88 |
|
@@ -92,19 +92,23 @@ class SoundStream(nn.Module):
|
|
92 |
# )#.to(self.args.device)
|
93 |
# self.upstream.model = self.upstream.model.to(self.device)
|
94 |
c=1
|
95 |
-
# self.upstream(wavs)
|
96 |
# self.processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
|
97 |
|
98 |
-
self.is_semantic= True
|
99 |
if self.is_semantic:
|
100 |
-
# self.semantic_model = AutoModel.from_pretrained("/aifs4su/data/zheny/DiT_TTS/ckpts/yz_2")
|
101 |
# self.semantic_model = AutoModel.from_pretrained("/aifs4su/data/zheny/fairseq/outputs/2024-05-11/13-27-56/hf15")
|
102 |
-
|
|
|
|
|
|
|
|
|
103 |
self.semantic_model.eval()
|
104 |
# self.transform_linear = nn.Linear(1024, 768)
|
105 |
|
106 |
|
107 |
-
|
108 |
# processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
|
109 |
# self.semantic_model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
|
110 |
self.fc_prior = nn.Linear(D+768, D+768 )
|
@@ -114,9 +118,9 @@ class SoundStream(nn.Module):
|
|
114 |
|
115 |
def get_last_layer(self):
|
116 |
return self.decoder.layers[-1].weight
|
117 |
-
|
118 |
-
def calculate_rec_loss(self, rec, target):
|
119 |
-
|
120 |
target = target / target.norm(dim=-1, keepdim=True)
|
121 |
rec = rec / rec.norm(dim=-1, keepdim=True)
|
122 |
rec_loss = (1 - (target * rec).sum(-1)).mean()
|
@@ -131,32 +135,32 @@ class SoundStream(nn.Module):
|
|
131 |
x = F.pad(x, (160, 160))
|
132 |
target = self.semantic_model(x, output_hidden_states=True) .hidden_states
|
133 |
target = torch.stack(target, dim=1)#.transpose(-1, -2)#.flatten(start_dim=1, end_dim=2)
|
134 |
-
|
135 |
-
target = target.mean(1)
|
136 |
# target = target[9]
|
137 |
return target
|
138 |
|
139 |
-
|
140 |
def forward(self, x: torch.Tensor, bw: int):
|
141 |
|
142 |
e_semantic_input = self.get_regress_target_whisper(x).detach()
|
143 |
|
144 |
e_semantic = self.encoder_semantic(e_semantic_input.transpose(1, 2))
|
145 |
e_acoustic = self.encoder(x)
|
146 |
-
|
147 |
-
|
148 |
e= torch.cat([e_acoustic, e_semantic], dim=1)
|
149 |
|
150 |
e = self.fc_prior(e.transpose(1, 2)).transpose(1, 2)
|
151 |
|
152 |
-
|
153 |
quantized, codes, bandwidth, commit_loss = self.quantizer(e, self.frame_rate, bw)
|
154 |
|
155 |
quantized_semantic = self.fc_post1(quantized.transpose(1, 2)).transpose(1, 2)
|
156 |
quantized_acoustic = self.fc_post2(quantized.transpose(1, 2)).transpose(1, 2)
|
157 |
|
158 |
o = self.decoder_2(quantized_acoustic)
|
159 |
-
|
160 |
o_semantic = self.decoder_semantic(quantized_semantic )
|
161 |
semantic_recon_loss = F.mse_loss(e_semantic_input.transpose(1, 2).detach(),o_semantic)
|
162 |
|
@@ -171,7 +175,7 @@ class SoundStream(nn.Module):
|
|
171 |
bw = target_bw
|
172 |
# codes = self.quantizer.encode(e, self.frame_rate, bw)
|
173 |
|
174 |
-
|
175 |
# if e_acoustic.shape[2] != e_semantic.shape[2]:
|
176 |
# print(f"e_acoustic {e_acoustic.shape} e_semantic{e_semantic.shape}")
|
177 |
|
@@ -182,9 +186,9 @@ class SoundStream(nn.Module):
|
|
182 |
|
183 |
|
184 |
if e_acoustic.shape[2] != e_semantic.shape[2]:
|
185 |
-
# e_acoustic = self.encoder(F.pad(x[:,0,:], (160, 160)).unsqueeze(0))
|
186 |
e_acoustic = self.encoder(torch.transpose(F.pad(x[:,0,:], (160, 160)).unsqueeze(0), 0, 1))
|
187 |
-
|
188 |
e= torch.cat([e_acoustic, e_semantic], dim=1)
|
189 |
|
190 |
e = self.fc_prior(e.transpose(1, 2)).transpose(1, 2)
|
|
|
1 |
+
|
2 |
|
3 |
from typing import Sequence, Optional, Union
|
4 |
import sys
|
|
|
28 |
def get_model_size(model):
|
29 |
# 计算总参数数
|
30 |
total_params = sum(p.numel() for p in model.parameters())
|
31 |
+
|
32 |
# 假设每个参数都是32位浮点数,计算模型大小(以字节为单位)
|
33 |
model_size_bytes = total_params # 每个参数4字节
|
34 |
+
|
35 |
# 转换为更易读的单位(例如,MB)
|
36 |
model_size_mb = model_size_bytes / (1024 ** 2)
|
37 |
+
|
38 |
return total_params, model_size_mb
|
39 |
|
40 |
|
41 |
class SoundStream(nn.Module):
|
42 |
""" SoundStream model or EnCodec model.
|
43 |
+
|
44 |
Args:
|
45 |
n_filters (int): n_filters (int): Base width for the model.
|
46 |
D (int): Intermediate representation dimension.
|
|
|
82 |
# out_D=D+768
|
83 |
self.quantizer = ResidualVectorQuantizer(dimension=D+768, n_q=n_q, bins=bins)
|
84 |
# Decoder model
|
85 |
+
|
86 |
# self.decoder = SEANetDecoder(n_filters= n_filters, dimension=D, ratios=ratios, causal=causal)
|
87 |
self.decoder_2 = dac2.Decoder( D,1024,ratios,)
|
88 |
|
|
|
92 |
# )#.to(self.args.device)
|
93 |
# self.upstream.model = self.upstream.model.to(self.device)
|
94 |
c=1
|
95 |
+
# self.upstream(wavs)
|
96 |
# self.processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
|
97 |
|
98 |
+
self.is_semantic= True
|
99 |
if self.is_semantic:
|
100 |
+
# self.semantic_model = AutoModel.from_pretrained("/aifs4su/data/zheny/DiT_TTS/ckpts/yz_2")
|
101 |
# self.semantic_model = AutoModel.from_pretrained("/aifs4su/data/zheny/fairseq/outputs/2024-05-11/13-27-56/hf15")
|
102 |
+
import os
|
103 |
+
this_dir = os.path.dirname(os.path.abspath(__file__)) # models
|
104 |
+
parent_dir = os.path.dirname(this_dir) # xcodec_mini_infer
|
105 |
+
model_dir = os.path.join(parent_dir, 'semantic_ckpts/hf_1_325000')
|
106 |
+
self.semantic_model = AutoModel.from_pretrained(model_dir)
|
107 |
self.semantic_model.eval()
|
108 |
# self.transform_linear = nn.Linear(1024, 768)
|
109 |
|
110 |
|
111 |
+
|
112 |
# processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
|
113 |
# self.semantic_model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
|
114 |
self.fc_prior = nn.Linear(D+768, D+768 )
|
|
|
118 |
|
119 |
def get_last_layer(self):
|
120 |
return self.decoder.layers[-1].weight
|
121 |
+
|
122 |
+
def calculate_rec_loss(self, rec, target):
|
123 |
+
|
124 |
target = target / target.norm(dim=-1, keepdim=True)
|
125 |
rec = rec / rec.norm(dim=-1, keepdim=True)
|
126 |
rec_loss = (1 - (target * rec).sum(-1)).mean()
|
|
|
135 |
x = F.pad(x, (160, 160))
|
136 |
target = self.semantic_model(x, output_hidden_states=True) .hidden_states
|
137 |
target = torch.stack(target, dim=1)#.transpose(-1, -2)#.flatten(start_dim=1, end_dim=2)
|
138 |
+
|
139 |
+
target = target.mean(1)
|
140 |
# target = target[9]
|
141 |
return target
|
142 |
|
143 |
+
|
144 |
def forward(self, x: torch.Tensor, bw: int):
|
145 |
|
146 |
e_semantic_input = self.get_regress_target_whisper(x).detach()
|
147 |
|
148 |
e_semantic = self.encoder_semantic(e_semantic_input.transpose(1, 2))
|
149 |
e_acoustic = self.encoder(x)
|
150 |
+
|
151 |
+
|
152 |
e= torch.cat([e_acoustic, e_semantic], dim=1)
|
153 |
|
154 |
e = self.fc_prior(e.transpose(1, 2)).transpose(1, 2)
|
155 |
|
156 |
+
|
157 |
quantized, codes, bandwidth, commit_loss = self.quantizer(e, self.frame_rate, bw)
|
158 |
|
159 |
quantized_semantic = self.fc_post1(quantized.transpose(1, 2)).transpose(1, 2)
|
160 |
quantized_acoustic = self.fc_post2(quantized.transpose(1, 2)).transpose(1, 2)
|
161 |
|
162 |
o = self.decoder_2(quantized_acoustic)
|
163 |
+
|
164 |
o_semantic = self.decoder_semantic(quantized_semantic )
|
165 |
semantic_recon_loss = F.mse_loss(e_semantic_input.transpose(1, 2).detach(),o_semantic)
|
166 |
|
|
|
175 |
bw = target_bw
|
176 |
# codes = self.quantizer.encode(e, self.frame_rate, bw)
|
177 |
|
178 |
+
|
179 |
# if e_acoustic.shape[2] != e_semantic.shape[2]:
|
180 |
# print(f"e_acoustic {e_acoustic.shape} e_semantic{e_semantic.shape}")
|
181 |
|
|
|
186 |
|
187 |
|
188 |
if e_acoustic.shape[2] != e_semantic.shape[2]:
|
189 |
+
# e_acoustic = self.encoder(F.pad(x[:,0,:], (160, 160)).unsqueeze(0))
|
190 |
e_acoustic = self.encoder(torch.transpose(F.pad(x[:,0,:], (160, 160)).unsqueeze(0), 0, 1))
|
191 |
+
|
192 |
e= torch.cat([e_acoustic, e_semantic], dim=1)
|
193 |
|
194 |
e = self.fc_prior(e.transpose(1, 2)).transpose(1, 2)
|