jamiehudson
commited on
Commit
•
8951629
1
Parent(s):
1fffcb6
Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +1084 -0
- config.json +31 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +8 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1084 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- f1
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
widget:
|
14 |
+
- text: man, product/whatever is my new best friend. i like product but the integration
|
15 |
+
of product into office and product is a lot of fun. i just spent the day feeding
|
16 |
+
it my training presentation i'm preparing in my day job and it was very helpful.
|
17 |
+
almost better than humans.
|
18 |
+
- text: that's great news! product is the perfect platform to share these advanced
|
19 |
+
product prompts and help more users get the most out of it!
|
20 |
+
- text: after only one week's trial of the new product with brand enabled, i have
|
21 |
+
replaced my default browser product that i was using for more than 7 years with
|
22 |
+
new product. i no longer need to spend a lot of time finding answers from a bunch
|
23 |
+
of search results and web pages. it's amazing
|
24 |
+
- text: very impressive. brand is finally fighting back. i am just a little worried
|
25 |
+
about the scalability of such a high context window size, since even in their
|
26 |
+
demos it took quite a while to process everything. regardless, i am very interested
|
27 |
+
in seeing what types of capabilities a >1m token size window can unleash.
|
28 |
+
- text: product the way it shows the sources is so fucking cool, this new ai is amazing
|
29 |
+
pipeline_tag: text-classification
|
30 |
+
inference: true
|
31 |
+
base_model: BAAI/bge-small-en-v1.5
|
32 |
+
model-index:
|
33 |
+
- name: SetFit with BAAI/bge-small-en-v1.5
|
34 |
+
results:
|
35 |
+
- task:
|
36 |
+
type: text-classification
|
37 |
+
name: Text Classification
|
38 |
+
dataset:
|
39 |
+
name: Unknown
|
40 |
+
type: unknown
|
41 |
+
split: test
|
42 |
+
metrics:
|
43 |
+
- type: accuracy
|
44 |
+
value: 0.964
|
45 |
+
name: Accuracy
|
46 |
+
- type: f1
|
47 |
+
value:
|
48 |
+
- 0.9130434782608695
|
49 |
+
- 0.888888888888889
|
50 |
+
- 0.9779951100244498
|
51 |
+
name: F1
|
52 |
+
- type: precision
|
53 |
+
value:
|
54 |
+
- 0.9545454545454546
|
55 |
+
- 1.0
|
56 |
+
- 0.9615384615384616
|
57 |
+
name: Precision
|
58 |
+
- type: recall
|
59 |
+
value:
|
60 |
+
- 0.875
|
61 |
+
- 0.8
|
62 |
+
- 0.9950248756218906
|
63 |
+
name: Recall
|
64 |
+
---
|
65 |
+
|
66 |
+
# SetFit with BAAI/bge-small-en-v1.5
|
67 |
+
|
68 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
69 |
+
|
70 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
71 |
+
|
72 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
73 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
74 |
+
|
75 |
+
## Model Details
|
76 |
+
|
77 |
+
### Model Description
|
78 |
+
- **Model Type:** SetFit
|
79 |
+
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
|
80 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
81 |
+
- **Maximum Sequence Length:** 512 tokens
|
82 |
+
- **Number of Classes:** 3 classes
|
83 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
84 |
+
<!-- - **Language:** Unknown -->
|
85 |
+
<!-- - **License:** Unknown -->
|
86 |
+
|
87 |
+
### Model Sources
|
88 |
+
|
89 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
90 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
91 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
92 |
+
|
93 |
+
### Model Labels
|
94 |
+
| Label | Examples |
|
95 |
+
|:--------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
96 |
+
| neither | <ul><li>'i asked brand to write it and then let it translate back. so in reality i have no clue what i am sending...'</li><li>"i saw someone summarize brand the other day; it doesn't give answers, it gives answer-shaped responses."</li><li>'thank you comrade i mean colleague. i will have brand summarize.'</li></ul> |
|
97 |
+
| peak | <ul><li>'brand!! it helped me finish my resume. i just asked it if it could write my resume based on horribly written descriptions i came up with. and it made it all pretty:)'</li><li>'been building products for a bit now and your product (audio pen) is simple, useful and just works (like the early magic when product came out). congratulations and keep the flag flying high. not surprised that india is producing apps like yours. high time:-)'</li><li>'just got access to personalization in brand!! totally unexpected. very happy'</li></ul> |
|
98 |
+
| pit | <ul><li>'brand recently i came across a very unwell patient in a psychiatric unit who was using product & this was reinforcing his delusional state & detrimentally impacting his mental health. anyone looking into this type of usage of product? what safe guards are being put in place?'</li><li>'brand product is def better at extracting numbers from images, product failed (pro version) twice...'</li><li>"the stuff brand gives is entirely too scripted *and* impractical, which is what i'm trying to avoid:/"</li></ul> |
|
99 |
+
|
100 |
+
## Evaluation
|
101 |
+
|
102 |
+
### Metrics
|
103 |
+
| Label | Accuracy | F1 | Precision | Recall |
|
104 |
+
|:--------|:---------|:------------------------------------------------------------|:----------------------------------------------|:---------------------------------|
|
105 |
+
| **all** | 0.964 | [0.9130434782608695, 0.888888888888889, 0.9779951100244498] | [0.9545454545454546, 1.0, 0.9615384615384616] | [0.875, 0.8, 0.9950248756218906] |
|
106 |
+
|
107 |
+
## Uses
|
108 |
+
|
109 |
+
### Direct Use for Inference
|
110 |
+
|
111 |
+
First install the SetFit library:
|
112 |
+
|
113 |
+
```bash
|
114 |
+
pip install setfit
|
115 |
+
```
|
116 |
+
|
117 |
+
Then you can load this model and run inference.
|
118 |
+
|
119 |
+
```python
|
120 |
+
from setfit import SetFitModel
|
121 |
+
|
122 |
+
# Download from the 🤗 Hub
|
123 |
+
model = SetFitModel.from_pretrained("jamiehudson/725_model_v4")
|
124 |
+
# Run inference
|
125 |
+
preds = model("product the way it shows the sources is so fucking cool, this new ai is amazing")
|
126 |
+
```
|
127 |
+
|
128 |
+
<!--
|
129 |
+
### Downstream Use
|
130 |
+
|
131 |
+
*List how someone could finetune this model on their own dataset.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
<!--
|
135 |
+
### Out-of-Scope Use
|
136 |
+
|
137 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
138 |
+
-->
|
139 |
+
|
140 |
+
<!--
|
141 |
+
## Bias, Risks and Limitations
|
142 |
+
|
143 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
144 |
+
-->
|
145 |
+
|
146 |
+
<!--
|
147 |
+
### Recommendations
|
148 |
+
|
149 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
150 |
+
-->
|
151 |
+
|
152 |
+
## Training Details
|
153 |
+
|
154 |
+
### Training Set Metrics
|
155 |
+
| Training set | Min | Median | Max |
|
156 |
+
|:-------------|:----|:--------|:----|
|
157 |
+
| Word count | 3 | 31.6606 | 98 |
|
158 |
+
|
159 |
+
| Label | Training Sample Count |
|
160 |
+
|:--------|:----------------------|
|
161 |
+
| pit | 277 |
|
162 |
+
| peak | 265 |
|
163 |
+
| neither | 1105 |
|
164 |
+
|
165 |
+
### Training Hyperparameters
|
166 |
+
- batch_size: (32, 32)
|
167 |
+
- num_epochs: (1, 1)
|
168 |
+
- max_steps: -1
|
169 |
+
- sampling_strategy: oversampling
|
170 |
+
- body_learning_rate: (2e-05, 1e-05)
|
171 |
+
- head_learning_rate: 0.01
|
172 |
+
- loss: CosineSimilarityLoss
|
173 |
+
- distance_metric: cosine_distance
|
174 |
+
- margin: 0.25
|
175 |
+
- end_to_end: False
|
176 |
+
- use_amp: False
|
177 |
+
- warmup_proportion: 0.1
|
178 |
+
- seed: 42
|
179 |
+
- eval_max_steps: -1
|
180 |
+
- load_best_model_at_end: False
|
181 |
+
|
182 |
+
### Training Results
|
183 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
184 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
185 |
+
| 0.0000 | 1 | 0.2683 | - |
|
186 |
+
| 0.0012 | 50 | 0.2643 | - |
|
187 |
+
| 0.0023 | 100 | 0.2432 | - |
|
188 |
+
| 0.0035 | 150 | 0.2623 | - |
|
189 |
+
| 0.0047 | 200 | 0.2527 | - |
|
190 |
+
| 0.0058 | 250 | 0.2252 | - |
|
191 |
+
| 0.0070 | 300 | 0.2362 | - |
|
192 |
+
| 0.0082 | 350 | 0.2334 | - |
|
193 |
+
| 0.0093 | 400 | 0.2189 | - |
|
194 |
+
| 0.0105 | 450 | 0.2144 | - |
|
195 |
+
| 0.0117 | 500 | 0.1971 | - |
|
196 |
+
| 0.0129 | 550 | 0.1565 | - |
|
197 |
+
| 0.0140 | 600 | 0.0816 | - |
|
198 |
+
| 0.0152 | 650 | 0.1417 | - |
|
199 |
+
| 0.0164 | 700 | 0.1051 | - |
|
200 |
+
| 0.0175 | 750 | 0.0686 | - |
|
201 |
+
| 0.0187 | 800 | 0.0394 | - |
|
202 |
+
| 0.0199 | 850 | 0.0947 | - |
|
203 |
+
| 0.0210 | 900 | 0.0468 | - |
|
204 |
+
| 0.0222 | 950 | 0.0143 | - |
|
205 |
+
| 0.0234 | 1000 | 0.0281 | - |
|
206 |
+
| 0.0245 | 1050 | 0.0329 | - |
|
207 |
+
| 0.0257 | 1100 | 0.0206 | - |
|
208 |
+
| 0.0269 | 1150 | 0.0113 | - |
|
209 |
+
| 0.0280 | 1200 | 0.0054 | - |
|
210 |
+
| 0.0292 | 1250 | 0.0056 | - |
|
211 |
+
| 0.0304 | 1300 | 0.0209 | - |
|
212 |
+
| 0.0315 | 1350 | 0.0064 | - |
|
213 |
+
| 0.0327 | 1400 | 0.0085 | - |
|
214 |
+
| 0.0339 | 1450 | 0.0025 | - |
|
215 |
+
| 0.0350 | 1500 | 0.0031 | - |
|
216 |
+
| 0.0362 | 1550 | 0.0024 | - |
|
217 |
+
| 0.0374 | 1600 | 0.0014 | - |
|
218 |
+
| 0.0386 | 1650 | 0.0019 | - |
|
219 |
+
| 0.0397 | 1700 | 0.0023 | - |
|
220 |
+
| 0.0409 | 1750 | 0.0014 | - |
|
221 |
+
| 0.0421 | 1800 | 0.002 | - |
|
222 |
+
| 0.0432 | 1850 | 0.001 | - |
|
223 |
+
| 0.0444 | 1900 | 0.001 | - |
|
224 |
+
| 0.0456 | 1950 | 0.0019 | - |
|
225 |
+
| 0.0467 | 2000 | 0.0017 | - |
|
226 |
+
| 0.0479 | 2050 | 0.001 | - |
|
227 |
+
| 0.0491 | 2100 | 0.0008 | - |
|
228 |
+
| 0.0502 | 2150 | 0.0011 | - |
|
229 |
+
| 0.0514 | 2200 | 0.0006 | - |
|
230 |
+
| 0.0526 | 2250 | 0.0012 | - |
|
231 |
+
| 0.0537 | 2300 | 0.0008 | - |
|
232 |
+
| 0.0549 | 2350 | 0.0014 | - |
|
233 |
+
| 0.0561 | 2400 | 0.0009 | - |
|
234 |
+
| 0.0572 | 2450 | 0.0009 | - |
|
235 |
+
| 0.0584 | 2500 | 0.001 | - |
|
236 |
+
| 0.0596 | 2550 | 0.0007 | - |
|
237 |
+
| 0.0607 | 2600 | 0.0007 | - |
|
238 |
+
| 0.0619 | 2650 | 0.0006 | - |
|
239 |
+
| 0.0631 | 2700 | 0.0004 | - |
|
240 |
+
| 0.0643 | 2750 | 0.0007 | - |
|
241 |
+
| 0.0654 | 2800 | 0.0005 | - |
|
242 |
+
| 0.0666 | 2850 | 0.0007 | - |
|
243 |
+
| 0.0678 | 2900 | 0.0007 | - |
|
244 |
+
| 0.0689 | 2950 | 0.0006 | - |
|
245 |
+
| 0.0701 | 3000 | 0.0005 | - |
|
246 |
+
| 0.0713 | 3050 | 0.0007 | - |
|
247 |
+
| 0.0724 | 3100 | 0.0008 | - |
|
248 |
+
| 0.0736 | 3150 | 0.0005 | - |
|
249 |
+
| 0.0748 | 3200 | 0.0005 | - |
|
250 |
+
| 0.0759 | 3250 | 0.0005 | - |
|
251 |
+
| 0.0771 | 3300 | 0.0006 | - |
|
252 |
+
| 0.0783 | 3350 | 0.0006 | - |
|
253 |
+
| 0.0794 | 3400 | 0.0006 | - |
|
254 |
+
| 0.0806 | 3450 | 0.0004 | - |
|
255 |
+
| 0.0818 | 3500 | 0.0005 | - |
|
256 |
+
| 0.0829 | 3550 | 0.0005 | - |
|
257 |
+
| 0.0841 | 3600 | 0.0005 | - |
|
258 |
+
| 0.0853 | 3650 | 0.0005 | - |
|
259 |
+
| 0.0864 | 3700 | 0.0006 | - |
|
260 |
+
| 0.0876 | 3750 | 0.0039 | - |
|
261 |
+
| 0.0888 | 3800 | 0.0004 | - |
|
262 |
+
| 0.0900 | 3850 | 0.0003 | - |
|
263 |
+
| 0.0911 | 3900 | 0.0004 | - |
|
264 |
+
| 0.0923 | 3950 | 0.0007 | - |
|
265 |
+
| 0.0935 | 4000 | 0.0003 | - |
|
266 |
+
| 0.0946 | 4050 | 0.0004 | - |
|
267 |
+
| 0.0958 | 4100 | 0.0003 | - |
|
268 |
+
| 0.0970 | 4150 | 0.0003 | - |
|
269 |
+
| 0.0981 | 4200 | 0.0004 | - |
|
270 |
+
| 0.0993 | 4250 | 0.0003 | - |
|
271 |
+
| 0.1005 | 4300 | 0.0004 | - |
|
272 |
+
| 0.1016 | 4350 | 0.0003 | - |
|
273 |
+
| 0.1028 | 4400 | 0.0004 | - |
|
274 |
+
| 0.1040 | 4450 | 0.0003 | - |
|
275 |
+
| 0.1051 | 4500 | 0.0004 | - |
|
276 |
+
| 0.1063 | 4550 | 0.0003 | - |
|
277 |
+
| 0.1075 | 4600 | 0.0003 | - |
|
278 |
+
| 0.1086 | 4650 | 0.0003 | - |
|
279 |
+
| 0.1098 | 4700 | 0.0003 | - |
|
280 |
+
| 0.1110 | 4750 | 0.0016 | - |
|
281 |
+
| 0.1121 | 4800 | 0.0003 | - |
|
282 |
+
| 0.1133 | 4850 | 0.0002 | - |
|
283 |
+
| 0.1145 | 4900 | 0.0003 | - |
|
284 |
+
| 0.1157 | 4950 | 0.0002 | - |
|
285 |
+
| 0.1168 | 5000 | 0.0003 | - |
|
286 |
+
| 0.1180 | 5050 | 0.0003 | - |
|
287 |
+
| 0.1192 | 5100 | 0.0003 | - |
|
288 |
+
| 0.1203 | 5150 | 0.0002 | - |
|
289 |
+
| 0.1215 | 5200 | 0.0003 | - |
|
290 |
+
| 0.1227 | 5250 | 0.0002 | - |
|
291 |
+
| 0.1238 | 5300 | 0.0178 | - |
|
292 |
+
| 0.1250 | 5350 | 0.0014 | - |
|
293 |
+
| 0.1262 | 5400 | 0.002 | - |
|
294 |
+
| 0.1273 | 5450 | 0.0002 | - |
|
295 |
+
| 0.1285 | 5500 | 0.0008 | - |
|
296 |
+
| 0.1297 | 5550 | 0.0003 | - |
|
297 |
+
| 0.1308 | 5600 | 0.0002 | - |
|
298 |
+
| 0.1320 | 5650 | 0.0002 | - |
|
299 |
+
| 0.1332 | 5700 | 0.0002 | - |
|
300 |
+
| 0.1343 | 5750 | 0.0003 | - |
|
301 |
+
| 0.1355 | 5800 | 0.0002 | - |
|
302 |
+
| 0.1367 | 5850 | 0.0003 | - |
|
303 |
+
| 0.1378 | 5900 | 0.0003 | - |
|
304 |
+
| 0.1390 | 5950 | 0.0002 | - |
|
305 |
+
| 0.1402 | 6000 | 0.0002 | - |
|
306 |
+
| 0.1414 | 6050 | 0.0002 | - |
|
307 |
+
| 0.1425 | 6100 | 0.0002 | - |
|
308 |
+
| 0.1437 | 6150 | 0.0002 | - |
|
309 |
+
| 0.1449 | 6200 | 0.0002 | - |
|
310 |
+
| 0.1460 | 6250 | 0.0019 | - |
|
311 |
+
| 0.1472 | 6300 | 0.0005 | - |
|
312 |
+
| 0.1484 | 6350 | 0.0002 | - |
|
313 |
+
| 0.1495 | 6400 | 0.0005 | - |
|
314 |
+
| 0.1507 | 6450 | 0.0003 | - |
|
315 |
+
| 0.1519 | 6500 | 0.0208 | - |
|
316 |
+
| 0.1530 | 6550 | 0.0003 | - |
|
317 |
+
| 0.1542 | 6600 | 0.0002 | - |
|
318 |
+
| 0.1554 | 6650 | 0.0002 | - |
|
319 |
+
| 0.1565 | 6700 | 0.0002 | - |
|
320 |
+
| 0.1577 | 6750 | 0.0002 | - |
|
321 |
+
| 0.1589 | 6800 | 0.0002 | - |
|
322 |
+
| 0.1600 | 6850 | 0.0002 | - |
|
323 |
+
| 0.1612 | 6900 | 0.0104 | - |
|
324 |
+
| 0.1624 | 6950 | 0.0001 | - |
|
325 |
+
| 0.1635 | 7000 | 0.0002 | - |
|
326 |
+
| 0.1647 | 7050 | 0.0002 | - |
|
327 |
+
| 0.1659 | 7100 | 0.0002 | - |
|
328 |
+
| 0.1671 | 7150 | 0.0001 | - |
|
329 |
+
| 0.1682 | 7200 | 0.0002 | - |
|
330 |
+
| 0.1694 | 7250 | 0.0002 | - |
|
331 |
+
| 0.1706 | 7300 | 0.0003 | - |
|
332 |
+
| 0.1717 | 7350 | 0.0002 | - |
|
333 |
+
| 0.1729 | 7400 | 0.0001 | - |
|
334 |
+
| 0.1741 | 7450 | 0.0001 | - |
|
335 |
+
| 0.1752 | 7500 | 0.0002 | - |
|
336 |
+
| 0.1764 | 7550 | 0.0004 | - |
|
337 |
+
| 0.1776 | 7600 | 0.0002 | - |
|
338 |
+
| 0.1787 | 7650 | 0.0005 | - |
|
339 |
+
| 0.1799 | 7700 | 0.0001 | - |
|
340 |
+
| 0.1811 | 7750 | 0.0002 | - |
|
341 |
+
| 0.1822 | 7800 | 0.0002 | - |
|
342 |
+
| 0.1834 | 7850 | 0.0001 | - |
|
343 |
+
| 0.1846 | 7900 | 0.0002 | - |
|
344 |
+
| 0.1857 | 7950 | 0.0002 | - |
|
345 |
+
| 0.1869 | 8000 | 0.0002 | - |
|
346 |
+
| 0.1881 | 8050 | 0.0001 | - |
|
347 |
+
| 0.1892 | 8100 | 0.0002 | - |
|
348 |
+
| 0.1904 | 8150 | 0.0001 | - |
|
349 |
+
| 0.1916 | 8200 | 0.0001 | - |
|
350 |
+
| 0.1928 | 8250 | 0.0001 | - |
|
351 |
+
| 0.1939 | 8300 | 0.0001 | - |
|
352 |
+
| 0.1951 | 8350 | 0.0001 | - |
|
353 |
+
| 0.1963 | 8400 | 0.0002 | - |
|
354 |
+
| 0.1974 | 8450 | 0.0002 | - |
|
355 |
+
| 0.1986 | 8500 | 0.0002 | - |
|
356 |
+
| 0.1998 | 8550 | 0.0002 | - |
|
357 |
+
| 0.2009 | 8600 | 0.0001 | - |
|
358 |
+
| 0.2021 | 8650 | 0.0001 | - |
|
359 |
+
| 0.2033 | 8700 | 0.0001 | - |
|
360 |
+
| 0.2044 | 8750 | 0.0001 | - |
|
361 |
+
| 0.2056 | 8800 | 0.0001 | - |
|
362 |
+
| 0.2068 | 8850 | 0.0001 | - |
|
363 |
+
| 0.2079 | 8900 | 0.0001 | - |
|
364 |
+
| 0.2091 | 8950 | 0.0001 | - |
|
365 |
+
| 0.2103 | 9000 | 0.0001 | - |
|
366 |
+
| 0.2114 | 9050 | 0.0001 | - |
|
367 |
+
| 0.2126 | 9100 | 0.0001 | - |
|
368 |
+
| 0.2138 | 9150 | 0.0001 | - |
|
369 |
+
| 0.2149 | 9200 | 0.0001 | - |
|
370 |
+
| 0.2161 | 9250 | 0.0002 | - |
|
371 |
+
| 0.2173 | 9300 | 0.0001 | - |
|
372 |
+
| 0.2185 | 9350 | 0.0002 | - |
|
373 |
+
| 0.2196 | 9400 | 0.0001 | - |
|
374 |
+
| 0.2208 | 9450 | 0.0001 | - |
|
375 |
+
| 0.2220 | 9500 | 0.0001 | - |
|
376 |
+
| 0.2231 | 9550 | 0.0001 | - |
|
377 |
+
| 0.2243 | 9600 | 0.0001 | - |
|
378 |
+
| 0.2255 | 9650 | 0.0002 | - |
|
379 |
+
| 0.2266 | 9700 | 0.0002 | - |
|
380 |
+
| 0.2278 | 9750 | 0.0001 | - |
|
381 |
+
| 0.2290 | 9800 | 0.0001 | - |
|
382 |
+
| 0.2301 | 9850 | 0.0002 | - |
|
383 |
+
| 0.2313 | 9900 | 0.0001 | - |
|
384 |
+
| 0.2325 | 9950 | 0.0001 | - |
|
385 |
+
| 0.2336 | 10000 | 0.0001 | - |
|
386 |
+
| 0.2348 | 10050 | 0.0001 | - |
|
387 |
+
| 0.2360 | 10100 | 0.0001 | - |
|
388 |
+
| 0.2371 | 10150 | 0.0001 | - |
|
389 |
+
| 0.2383 | 10200 | 0.0001 | - |
|
390 |
+
| 0.2395 | 10250 | 0.0001 | - |
|
391 |
+
| 0.2406 | 10300 | 0.0001 | - |
|
392 |
+
| 0.2418 | 10350 | 0.0001 | - |
|
393 |
+
| 0.2430 | 10400 | 0.0001 | - |
|
394 |
+
| 0.2442 | 10450 | 0.0001 | - |
|
395 |
+
| 0.2453 | 10500 | 0.0001 | - |
|
396 |
+
| 0.2465 | 10550 | 0.0001 | - |
|
397 |
+
| 0.2477 | 10600 | 0.0001 | - |
|
398 |
+
| 0.2488 | 10650 | 0.0001 | - |
|
399 |
+
| 0.2500 | 10700 | 0.0001 | - |
|
400 |
+
| 0.2512 | 10750 | 0.0001 | - |
|
401 |
+
| 0.2523 | 10800 | 0.0001 | - |
|
402 |
+
| 0.2535 | 10850 | 0.0001 | - |
|
403 |
+
| 0.2547 | 10900 | 0.0001 | - |
|
404 |
+
| 0.2558 | 10950 | 0.0001 | - |
|
405 |
+
| 0.2570 | 11000 | 0.0002 | - |
|
406 |
+
| 0.2582 | 11050 | 0.0001 | - |
|
407 |
+
| 0.2593 | 11100 | 0.0003 | - |
|
408 |
+
| 0.2605 | 11150 | 0.0001 | - |
|
409 |
+
| 0.2617 | 11200 | 0.0001 | - |
|
410 |
+
| 0.2628 | 11250 | 0.0001 | - |
|
411 |
+
| 0.2640 | 11300 | 0.0001 | - |
|
412 |
+
| 0.2652 | 11350 | 0.0001 | - |
|
413 |
+
| 0.2663 | 11400 | 0.0001 | - |
|
414 |
+
| 0.2675 | 11450 | 0.0001 | - |
|
415 |
+
| 0.2687 | 11500 | 0.0001 | - |
|
416 |
+
| 0.2699 | 11550 | 0.0001 | - |
|
417 |
+
| 0.2710 | 11600 | 0.0001 | - |
|
418 |
+
| 0.2722 | 11650 | 0.0001 | - |
|
419 |
+
| 0.2734 | 11700 | 0.0001 | - |
|
420 |
+
| 0.2745 | 11750 | 0.0001 | - |
|
421 |
+
| 0.2757 | 11800 | 0.0001 | - |
|
422 |
+
| 0.2769 | 11850 | 0.0001 | - |
|
423 |
+
| 0.2780 | 11900 | 0.0001 | - |
|
424 |
+
| 0.2792 | 11950 | 0.0001 | - |
|
425 |
+
| 0.2804 | 12000 | 0.0001 | - |
|
426 |
+
| 0.2815 | 12050 | 0.0001 | - |
|
427 |
+
| 0.2827 | 12100 | 0.0137 | - |
|
428 |
+
| 0.2839 | 12150 | 0.0001 | - |
|
429 |
+
| 0.2850 | 12200 | 0.0001 | - |
|
430 |
+
| 0.2862 | 12250 | 0.0001 | - |
|
431 |
+
| 0.2874 | 12300 | 0.0001 | - |
|
432 |
+
| 0.2885 | 12350 | 0.0001 | - |
|
433 |
+
| 0.2897 | 12400 | 0.0001 | - |
|
434 |
+
| 0.2909 | 12450 | 0.0001 | - |
|
435 |
+
| 0.2920 | 12500 | 0.0001 | - |
|
436 |
+
| 0.2932 | 12550 | 0.0001 | - |
|
437 |
+
| 0.2944 | 12600 | 0.0001 | - |
|
438 |
+
| 0.2956 | 12650 | 0.0001 | - |
|
439 |
+
| 0.2967 | 12700 | 0.0 | - |
|
440 |
+
| 0.2979 | 12750 | 0.0001 | - |
|
441 |
+
| 0.2991 | 12800 | 0.0001 | - |
|
442 |
+
| 0.3002 | 12850 | 0.0001 | - |
|
443 |
+
| 0.3014 | 12900 | 0.0001 | - |
|
444 |
+
| 0.3026 | 12950 | 0.0001 | - |
|
445 |
+
| 0.3037 | 13000 | 0.0001 | - |
|
446 |
+
| 0.3049 | 13050 | 0.0001 | - |
|
447 |
+
| 0.3061 | 13100 | 0.0001 | - |
|
448 |
+
| 0.3072 | 13150 | 0.0001 | - |
|
449 |
+
| 0.3084 | 13200 | 0.0001 | - |
|
450 |
+
| 0.3096 | 13250 | 0.0001 | - |
|
451 |
+
| 0.3107 | 13300 | 0.0001 | - |
|
452 |
+
| 0.3119 | 13350 | 0.0001 | - |
|
453 |
+
| 0.3131 | 13400 | 0.0001 | - |
|
454 |
+
| 0.3142 | 13450 | 0.0001 | - |
|
455 |
+
| 0.3154 | 13500 | 0.0001 | - |
|
456 |
+
| 0.3166 | 13550 | 0.0001 | - |
|
457 |
+
| 0.3177 | 13600 | 0.0001 | - |
|
458 |
+
| 0.3189 | 13650 | 0.0001 | - |
|
459 |
+
| 0.3201 | 13700 | 0.0001 | - |
|
460 |
+
| 0.3213 | 13750 | 0.0001 | - |
|
461 |
+
| 0.3224 | 13800 | 0.0001 | - |
|
462 |
+
| 0.3236 | 13850 | 0.0 | - |
|
463 |
+
| 0.3248 | 13900 | 0.0001 | - |
|
464 |
+
| 0.3259 | 13950 | 0.0001 | - |
|
465 |
+
| 0.3271 | 14000 | 0.0001 | - |
|
466 |
+
| 0.3283 | 14050 | 0.0002 | - |
|
467 |
+
| 0.3294 | 14100 | 0.0001 | - |
|
468 |
+
| 0.3306 | 14150 | 0.0001 | - |
|
469 |
+
| 0.3318 | 14200 | 0.0001 | - |
|
470 |
+
| 0.3329 | 14250 | 0.0001 | - |
|
471 |
+
| 0.3341 | 14300 | 0.0001 | - |
|
472 |
+
| 0.3353 | 14350 | 0.0001 | - |
|
473 |
+
| 0.3364 | 14400 | 0.0001 | - |
|
474 |
+
| 0.3376 | 14450 | 0.0001 | - |
|
475 |
+
| 0.3388 | 14500 | 0.0001 | - |
|
476 |
+
| 0.3399 | 14550 | 0.0001 | - |
|
477 |
+
| 0.3411 | 14600 | 0.0001 | - |
|
478 |
+
| 0.3423 | 14650 | 0.0001 | - |
|
479 |
+
| 0.3434 | 14700 | 0.0001 | - |
|
480 |
+
| 0.3446 | 14750 | 0.0001 | - |
|
481 |
+
| 0.3458 | 14800 | 0.0001 | - |
|
482 |
+
| 0.3470 | 14850 | 0.0001 | - |
|
483 |
+
| 0.3481 | 14900 | 0.0001 | - |
|
484 |
+
| 0.3493 | 14950 | 0.0 | - |
|
485 |
+
| 0.3505 | 15000 | 0.0001 | - |
|
486 |
+
| 0.3516 | 15050 | 0.0001 | - |
|
487 |
+
| 0.3528 | 15100 | 0.0 | - |
|
488 |
+
| 0.3540 | 15150 | 0.0001 | - |
|
489 |
+
| 0.3551 | 15200 | 0.0001 | - |
|
490 |
+
| 0.3563 | 15250 | 0.0001 | - |
|
491 |
+
| 0.3575 | 15300 | 0.0001 | - |
|
492 |
+
| 0.3586 | 15350 | 0.0001 | - |
|
493 |
+
| 0.3598 | 15400 | 0.0001 | - |
|
494 |
+
| 0.3610 | 15450 | 0.0001 | - |
|
495 |
+
| 0.3621 | 15500 | 0.0001 | - |
|
496 |
+
| 0.3633 | 15550 | 0.0001 | - |
|
497 |
+
| 0.3645 | 15600 | 0.0002 | - |
|
498 |
+
| 0.3656 | 15650 | 0.0001 | - |
|
499 |
+
| 0.3668 | 15700 | 0.0001 | - |
|
500 |
+
| 0.3680 | 15750 | 0.0001 | - |
|
501 |
+
| 0.3692 | 15800 | 0.0001 | - |
|
502 |
+
| 0.3703 | 15850 | 0.0001 | - |
|
503 |
+
| 0.3715 | 15900 | 0.0001 | - |
|
504 |
+
| 0.3727 | 15950 | 0.0 | - |
|
505 |
+
| 0.3738 | 16000 | 0.0 | - |
|
506 |
+
| 0.3750 | 16050 | 0.0 | - |
|
507 |
+
| 0.3762 | 16100 | 0.0 | - |
|
508 |
+
| 0.3773 | 16150 | 0.0001 | - |
|
509 |
+
| 0.3785 | 16200 | 0.0001 | - |
|
510 |
+
| 0.3797 | 16250 | 0.0001 | - |
|
511 |
+
| 0.3808 | 16300 | 0.0001 | - |
|
512 |
+
| 0.3820 | 16350 | 0.0001 | - |
|
513 |
+
| 0.3832 | 16400 | 0.0001 | - |
|
514 |
+
| 0.3843 | 16450 | 0.0 | - |
|
515 |
+
| 0.3855 | 16500 | 0.0001 | - |
|
516 |
+
| 0.3867 | 16550 | 0.0 | - |
|
517 |
+
| 0.3878 | 16600 | 0.0001 | - |
|
518 |
+
| 0.3890 | 16650 | 0.0001 | - |
|
519 |
+
| 0.3902 | 16700 | 0.0001 | - |
|
520 |
+
| 0.3913 | 16750 | 0.0001 | - |
|
521 |
+
| 0.3925 | 16800 | 0.0002 | - |
|
522 |
+
| 0.3937 | 16850 | 0.0002 | - |
|
523 |
+
| 0.3949 | 16900 | 0.0 | - |
|
524 |
+
| 0.3960 | 16950 | 0.0 | - |
|
525 |
+
| 0.3972 | 17000 | 0.0 | - |
|
526 |
+
| 0.3984 | 17050 | 0.0001 | - |
|
527 |
+
| 0.3995 | 17100 | 0.0001 | - |
|
528 |
+
| 0.4007 | 17150 | 0.0001 | - |
|
529 |
+
| 0.4019 | 17200 | 0.0001 | - |
|
530 |
+
| 0.4030 | 17250 | 0.0 | - |
|
531 |
+
| 0.4042 | 17300 | 0.0 | - |
|
532 |
+
| 0.4054 | 17350 | 0.0279 | - |
|
533 |
+
| 0.4065 | 17400 | 0.0 | - |
|
534 |
+
| 0.4077 | 17450 | 0.0 | - |
|
535 |
+
| 0.4089 | 17500 | 0.0 | - |
|
536 |
+
| 0.4100 | 17550 | 0.0 | - |
|
537 |
+
| 0.4112 | 17600 | 0.0001 | - |
|
538 |
+
| 0.4124 | 17650 | 0.0 | - |
|
539 |
+
| 0.4135 | 17700 | 0.028 | - |
|
540 |
+
| 0.4147 | 17750 | 0.0 | - |
|
541 |
+
| 0.4159 | 17800 | 0.0 | - |
|
542 |
+
| 0.4170 | 17850 | 0.0 | - |
|
543 |
+
| 0.4182 | 17900 | 0.0 | - |
|
544 |
+
| 0.4194 | 17950 | 0.0001 | - |
|
545 |
+
| 0.4206 | 18000 | 0.0 | - |
|
546 |
+
| 0.4217 | 18050 | 0.0 | - |
|
547 |
+
| 0.4229 | 18100 | 0.0001 | - |
|
548 |
+
| 0.4241 | 18150 | 0.0 | - |
|
549 |
+
| 0.4252 | 18200 | 0.0 | - |
|
550 |
+
| 0.4264 | 18250 | 0.0 | - |
|
551 |
+
| 0.4276 | 18300 | 0.0 | - |
|
552 |
+
| 0.4287 | 18350 | 0.0 | - |
|
553 |
+
| 0.4299 | 18400 | 0.0 | - |
|
554 |
+
| 0.4311 | 18450 | 0.0001 | - |
|
555 |
+
| 0.4322 | 18500 | 0.0001 | - |
|
556 |
+
| 0.4334 | 18550 | 0.0001 | - |
|
557 |
+
| 0.4346 | 18600 | 0.0001 | - |
|
558 |
+
| 0.4357 | 18650 | 0.0 | - |
|
559 |
+
| 0.4369 | 18700 | 0.0 | - |
|
560 |
+
| 0.4381 | 18750 | 0.0001 | - |
|
561 |
+
| 0.4392 | 18800 | 0.0001 | - |
|
562 |
+
| 0.4404 | 18850 | 0.0 | - |
|
563 |
+
| 0.4416 | 18900 | 0.0001 | - |
|
564 |
+
| 0.4427 | 18950 | 0.0001 | - |
|
565 |
+
| 0.4439 | 19000 | 0.0 | - |
|
566 |
+
| 0.4451 | 19050 | 0.0 | - |
|
567 |
+
| 0.4463 | 19100 | 0.0001 | - |
|
568 |
+
| 0.4474 | 19150 | 0.0 | - |
|
569 |
+
| 0.4486 | 19200 | 0.0001 | - |
|
570 |
+
| 0.4498 | 19250 | 0.0 | - |
|
571 |
+
| 0.4509 | 19300 | 0.0001 | - |
|
572 |
+
| 0.4521 | 19350 | 0.0001 | - |
|
573 |
+
| 0.4533 | 19400 | 0.0001 | - |
|
574 |
+
| 0.4544 | 19450 | 0.0 | - |
|
575 |
+
| 0.4556 | 19500 | 0.0001 | - |
|
576 |
+
| 0.4568 | 19550 | 0.0001 | - |
|
577 |
+
| 0.4579 | 19600 | 0.0001 | - |
|
578 |
+
| 0.4591 | 19650 | 0.0001 | - |
|
579 |
+
| 0.4603 | 19700 | 0.0001 | - |
|
580 |
+
| 0.4614 | 19750 | 0.0001 | - |
|
581 |
+
| 0.4626 | 19800 | 0.0 | - |
|
582 |
+
| 0.4638 | 19850 | 0.0 | - |
|
583 |
+
| 0.4649 | 19900 | 0.0001 | - |
|
584 |
+
| 0.4661 | 19950 | 0.0 | - |
|
585 |
+
| 0.4673 | 20000 | 0.0 | - |
|
586 |
+
| 0.4684 | 20050 | 0.0 | - |
|
587 |
+
| 0.4696 | 20100 | 0.0 | - |
|
588 |
+
| 0.4708 | 20150 | 0.0 | - |
|
589 |
+
| 0.4720 | 20200 | 0.0 | - |
|
590 |
+
| 0.4731 | 20250 | 0.0 | - |
|
591 |
+
| 0.4743 | 20300 | 0.0001 | - |
|
592 |
+
| 0.4755 | 20350 | 0.0001 | - |
|
593 |
+
| 0.4766 | 20400 | 0.0001 | - |
|
594 |
+
| 0.4778 | 20450 | 0.0 | - |
|
595 |
+
| 0.4790 | 20500 | 0.0 | - |
|
596 |
+
| 0.4801 | 20550 | 0.0001 | - |
|
597 |
+
| 0.4813 | 20600 | 0.0 | - |
|
598 |
+
| 0.4825 | 20650 | 0.0005 | - |
|
599 |
+
| 0.4836 | 20700 | 0.0001 | - |
|
600 |
+
| 0.4848 | 20750 | 0.0001 | - |
|
601 |
+
| 0.4860 | 20800 | 0.0 | - |
|
602 |
+
| 0.4871 | 20850 | 0.0001 | - |
|
603 |
+
| 0.4883 | 20900 | 0.0001 | - |
|
604 |
+
| 0.4895 | 20950 | 0.0 | - |
|
605 |
+
| 0.4906 | 21000 | 0.0 | - |
|
606 |
+
| 0.4918 | 21050 | 0.0 | - |
|
607 |
+
| 0.4930 | 21100 | 0.0 | - |
|
608 |
+
| 0.4941 | 21150 | 0.0001 | - |
|
609 |
+
| 0.4953 | 21200 | 0.0 | - |
|
610 |
+
| 0.4965 | 21250 | 0.0001 | - |
|
611 |
+
| 0.4977 | 21300 | 0.0 | - |
|
612 |
+
| 0.4988 | 21350 | 0.0001 | - |
|
613 |
+
| 0.5000 | 21400 | 0.0001 | - |
|
614 |
+
| 0.5012 | 21450 | 0.0 | - |
|
615 |
+
| 0.5023 | 21500 | 0.0 | - |
|
616 |
+
| 0.5035 | 21550 | 0.0 | - |
|
617 |
+
| 0.5047 | 21600 | 0.0001 | - |
|
618 |
+
| 0.5058 | 21650 | 0.0 | - |
|
619 |
+
| 0.5070 | 21700 | 0.0 | - |
|
620 |
+
| 0.5082 | 21750 | 0.0 | - |
|
621 |
+
| 0.5093 | 21800 | 0.0 | - |
|
622 |
+
| 0.5105 | 21850 | 0.0 | - |
|
623 |
+
| 0.5117 | 21900 | 0.0001 | - |
|
624 |
+
| 0.5128 | 21950 | 0.0 | - |
|
625 |
+
| 0.5140 | 22000 | 0.0 | - |
|
626 |
+
| 0.5152 | 22050 | 0.0 | - |
|
627 |
+
| 0.5163 | 22100 | 0.0 | - |
|
628 |
+
| 0.5175 | 22150 | 0.0 | - |
|
629 |
+
| 0.5187 | 22200 | 0.0001 | - |
|
630 |
+
| 0.5198 | 22250 | 0.0 | - |
|
631 |
+
| 0.5210 | 22300 | 0.0001 | - |
|
632 |
+
| 0.5222 | 22350 | 0.0 | - |
|
633 |
+
| 0.5234 | 22400 | 0.0001 | - |
|
634 |
+
| 0.5245 | 22450 | 0.0001 | - |
|
635 |
+
| 0.5257 | 22500 | 0.0 | - |
|
636 |
+
| 0.5269 | 22550 | 0.0 | - |
|
637 |
+
| 0.5280 | 22600 | 0.0 | - |
|
638 |
+
| 0.5292 | 22650 | 0.0 | - |
|
639 |
+
| 0.5304 | 22700 | 0.0 | - |
|
640 |
+
| 0.5315 | 22750 | 0.0 | - |
|
641 |
+
| 0.5327 | 22800 | 0.0 | - |
|
642 |
+
| 0.5339 | 22850 | 0.0 | - |
|
643 |
+
| 0.5350 | 22900 | 0.0001 | - |
|
644 |
+
| 0.5362 | 22950 | 0.0 | - |
|
645 |
+
| 0.5374 | 23000 | 0.0 | - |
|
646 |
+
| 0.5385 | 23050 | 0.0001 | - |
|
647 |
+
| 0.5397 | 23100 | 0.0 | - |
|
648 |
+
| 0.5409 | 23150 | 0.0 | - |
|
649 |
+
| 0.5420 | 23200 | 0.0001 | - |
|
650 |
+
| 0.5432 | 23250 | 0.0 | - |
|
651 |
+
| 0.5444 | 23300 | 0.0001 | - |
|
652 |
+
| 0.5455 | 23350 | 0.0001 | - |
|
653 |
+
| 0.5467 | 23400 | 0.0 | - |
|
654 |
+
| 0.5479 | 23450 | 0.0 | - |
|
655 |
+
| 0.5491 | 23500 | 0.0001 | - |
|
656 |
+
| 0.5502 | 23550 | 0.0 | - |
|
657 |
+
| 0.5514 | 23600 | 0.0001 | - |
|
658 |
+
| 0.5526 | 23650 | 0.0 | - |
|
659 |
+
| 0.5537 | 23700 | 0.0 | - |
|
660 |
+
| 0.5549 | 23750 | 0.0001 | - |
|
661 |
+
| 0.5561 | 23800 | 0.0 | - |
|
662 |
+
| 0.5572 | 23850 | 0.0 | - |
|
663 |
+
| 0.5584 | 23900 | 0.0 | - |
|
664 |
+
| 0.5596 | 23950 | 0.0 | - |
|
665 |
+
| 0.5607 | 24000 | 0.0 | - |
|
666 |
+
| 0.5619 | 24050 | 0.0 | - |
|
667 |
+
| 0.5631 | 24100 | 0.0001 | - |
|
668 |
+
| 0.5642 | 24150 | 0.0001 | - |
|
669 |
+
| 0.5654 | 24200 | 0.0 | - |
|
670 |
+
| 0.5666 | 24250 | 0.0 | - |
|
671 |
+
| 0.5677 | 24300 | 0.0001 | - |
|
672 |
+
| 0.5689 | 24350 | 0.0 | - |
|
673 |
+
| 0.5701 | 24400 | 0.0001 | - |
|
674 |
+
| 0.5712 | 24450 | 0.0 | - |
|
675 |
+
| 0.5724 | 24500 | 0.0 | - |
|
676 |
+
| 0.5736 | 24550 | 0.0 | - |
|
677 |
+
| 0.5748 | 24600 | 0.0029 | - |
|
678 |
+
| 0.5759 | 24650 | 0.0 | - |
|
679 |
+
| 0.5771 | 24700 | 0.0 | - |
|
680 |
+
| 0.5783 | 24750 | 0.0 | - |
|
681 |
+
| 0.5794 | 24800 | 0.0 | - |
|
682 |
+
| 0.5806 | 24850 | 0.0 | - |
|
683 |
+
| 0.5818 | 24900 | 0.0 | - |
|
684 |
+
| 0.5829 | 24950 | 0.0001 | - |
|
685 |
+
| 0.5841 | 25000 | 0.0 | - |
|
686 |
+
| 0.5853 | 25050 | 0.0 | - |
|
687 |
+
| 0.5864 | 25100 | 0.0001 | - |
|
688 |
+
| 0.5876 | 25150 | 0.0 | - |
|
689 |
+
| 0.5888 | 25200 | 0.0 | - |
|
690 |
+
| 0.5899 | 25250 | 0.0 | - |
|
691 |
+
| 0.5911 | 25300 | 0.0001 | - |
|
692 |
+
| 0.5923 | 25350 | 0.0 | - |
|
693 |
+
| 0.5934 | 25400 | 0.0001 | - |
|
694 |
+
| 0.5946 | 25450 | 0.0 | - |
|
695 |
+
| 0.5958 | 25500 | 0.0 | - |
|
696 |
+
| 0.5969 | 25550 | 0.0 | - |
|
697 |
+
| 0.5981 | 25600 | 0.0 | - |
|
698 |
+
| 0.5993 | 25650 | 0.0 | - |
|
699 |
+
| 0.6005 | 25700 | 0.0 | - |
|
700 |
+
| 0.6016 | 25750 | 0.0 | - |
|
701 |
+
| 0.6028 | 25800 | 0.0 | - |
|
702 |
+
| 0.6040 | 25850 | 0.0 | - |
|
703 |
+
| 0.6051 | 25900 | 0.0 | - |
|
704 |
+
| 0.6063 | 25950 | 0.0 | - |
|
705 |
+
| 0.6075 | 26000 | 0.0 | - |
|
706 |
+
| 0.6086 | 26050 | 0.0 | - |
|
707 |
+
| 0.6098 | 26100 | 0.0 | - |
|
708 |
+
| 0.6110 | 26150 | 0.0 | - |
|
709 |
+
| 0.6121 | 26200 | 0.0 | - |
|
710 |
+
| 0.6133 | 26250 | 0.0 | - |
|
711 |
+
| 0.6145 | 26300 | 0.0 | - |
|
712 |
+
| 0.6156 | 26350 | 0.0001 | - |
|
713 |
+
| 0.6168 | 26400 | 0.0 | - |
|
714 |
+
| 0.6180 | 26450 | 0.0 | - |
|
715 |
+
| 0.6191 | 26500 | 0.0 | - |
|
716 |
+
| 0.6203 | 26550 | 0.0 | - |
|
717 |
+
| 0.6215 | 26600 | 0.0001 | - |
|
718 |
+
| 0.6226 | 26650 | 0.0 | - |
|
719 |
+
| 0.6238 | 26700 | 0.0 | - |
|
720 |
+
| 0.6250 | 26750 | 0.0 | - |
|
721 |
+
| 0.6262 | 26800 | 0.0 | - |
|
722 |
+
| 0.6273 | 26850 | 0.0 | - |
|
723 |
+
| 0.6285 | 26900 | 0.0 | - |
|
724 |
+
| 0.6297 | 26950 | 0.0 | - |
|
725 |
+
| 0.6308 | 27000 | 0.0 | - |
|
726 |
+
| 0.6320 | 27050 | 0.0001 | - |
|
727 |
+
| 0.6332 | 27100 | 0.0 | - |
|
728 |
+
| 0.6343 | 27150 | 0.0 | - |
|
729 |
+
| 0.6355 | 27200 | 0.0 | - |
|
730 |
+
| 0.6367 | 27250 | 0.0001 | - |
|
731 |
+
| 0.6378 | 27300 | 0.0 | - |
|
732 |
+
| 0.6390 | 27350 | 0.0 | - |
|
733 |
+
| 0.6402 | 27400 | 0.0 | - |
|
734 |
+
| 0.6413 | 27450 | 0.0 | - |
|
735 |
+
| 0.6425 | 27500 | 0.0 | - |
|
736 |
+
| 0.6437 | 27550 | 0.0 | - |
|
737 |
+
| 0.6448 | 27600 | 0.0001 | - |
|
738 |
+
| 0.6460 | 27650 | 0.0001 | - |
|
739 |
+
| 0.6472 | 27700 | 0.0 | - |
|
740 |
+
| 0.6483 | 27750 | 0.0 | - |
|
741 |
+
| 0.6495 | 27800 | 0.0 | - |
|
742 |
+
| 0.6507 | 27850 | 0.0 | - |
|
743 |
+
| 0.6519 | 27900 | 0.0 | - |
|
744 |
+
| 0.6530 | 27950 | 0.0 | - |
|
745 |
+
| 0.6542 | 28000 | 0.0 | - |
|
746 |
+
| 0.6554 | 28050 | 0.0 | - |
|
747 |
+
| 0.6565 | 28100 | 0.0 | - |
|
748 |
+
| 0.6577 | 28150 | 0.0 | - |
|
749 |
+
| 0.6589 | 28200 | 0.0 | - |
|
750 |
+
| 0.6600 | 28250 | 0.0 | - |
|
751 |
+
| 0.6612 | 28300 | 0.0 | - |
|
752 |
+
| 0.6624 | 28350 | 0.0 | - |
|
753 |
+
| 0.6635 | 28400 | 0.0 | - |
|
754 |
+
| 0.6647 | 28450 | 0.0 | - |
|
755 |
+
| 0.6659 | 28500 | 0.0 | - |
|
756 |
+
| 0.6670 | 28550 | 0.0 | - |
|
757 |
+
| 0.6682 | 28600 | 0.0001 | - |
|
758 |
+
| 0.6694 | 28650 | 0.0 | - |
|
759 |
+
| 0.6705 | 28700 | 0.0 | - |
|
760 |
+
| 0.6717 | 28750 | 0.0 | - |
|
761 |
+
| 0.6729 | 28800 | 0.0 | - |
|
762 |
+
| 0.6740 | 28850 | 0.0 | - |
|
763 |
+
| 0.6752 | 28900 | 0.0 | - |
|
764 |
+
| 0.6764 | 28950 | 0.0 | - |
|
765 |
+
| 0.6776 | 29000 | 0.0 | - |
|
766 |
+
| 0.6787 | 29050 | 0.0 | - |
|
767 |
+
| 0.6799 | 29100 | 0.0 | - |
|
768 |
+
| 0.6811 | 29150 | 0.0001 | - |
|
769 |
+
| 0.6822 | 29200 | 0.0 | - |
|
770 |
+
| 0.6834 | 29250 | 0.0 | - |
|
771 |
+
| 0.6846 | 29300 | 0.0 | - |
|
772 |
+
| 0.6857 | 29350 | 0.0 | - |
|
773 |
+
| 0.6869 | 29400 | 0.0 | - |
|
774 |
+
| 0.6881 | 29450 | 0.0 | - |
|
775 |
+
| 0.6892 | 29500 | 0.0 | - |
|
776 |
+
| 0.6904 | 29550 | 0.0 | - |
|
777 |
+
| 0.6916 | 29600 | 0.0 | - |
|
778 |
+
| 0.6927 | 29650 | 0.0 | - |
|
779 |
+
| 0.6939 | 29700 | 0.0 | - |
|
780 |
+
| 0.6951 | 29750 | 0.0 | - |
|
781 |
+
| 0.6962 | 29800 | 0.0 | - |
|
782 |
+
| 0.6974 | 29850 | 0.0 | - |
|
783 |
+
| 0.6986 | 29900 | 0.0 | - |
|
784 |
+
| 0.6998 | 29950 | 0.0 | - |
|
785 |
+
| 0.7009 | 30000 | 0.0 | - |
|
786 |
+
| 0.7021 | 30050 | 0.0 | - |
|
787 |
+
| 0.7033 | 30100 | 0.0 | - |
|
788 |
+
| 0.7044 | 30150 | 0.0 | - |
|
789 |
+
| 0.7056 | 30200 | 0.0 | - |
|
790 |
+
| 0.7068 | 30250 | 0.0 | - |
|
791 |
+
| 0.7079 | 30300 | 0.0 | - |
|
792 |
+
| 0.7091 | 30350 | 0.0 | - |
|
793 |
+
| 0.7103 | 30400 | 0.0 | - |
|
794 |
+
| 0.7114 | 30450 | 0.0 | - |
|
795 |
+
| 0.7126 | 30500 | 0.0 | - |
|
796 |
+
| 0.7138 | 30550 | 0.0 | - |
|
797 |
+
| 0.7149 | 30600 | 0.0 | - |
|
798 |
+
| 0.7161 | 30650 | 0.0 | - |
|
799 |
+
| 0.7173 | 30700 | 0.0 | - |
|
800 |
+
| 0.7184 | 30750 | 0.0 | - |
|
801 |
+
| 0.7196 | 30800 | 0.0 | - |
|
802 |
+
| 0.7208 | 30850 | 0.0001 | - |
|
803 |
+
| 0.7219 | 30900 | 0.0 | - |
|
804 |
+
| 0.7231 | 30950 | 0.0 | - |
|
805 |
+
| 0.7243 | 31000 | 0.0 | - |
|
806 |
+
| 0.7255 | 31050 | 0.0 | - |
|
807 |
+
| 0.7266 | 31100 | 0.0 | - |
|
808 |
+
| 0.7278 | 31150 | 0.0 | - |
|
809 |
+
| 0.7290 | 31200 | 0.0 | - |
|
810 |
+
| 0.7301 | 31250 | 0.0 | - |
|
811 |
+
| 0.7313 | 31300 | 0.0 | - |
|
812 |
+
| 0.7325 | 31350 | 0.0 | - |
|
813 |
+
| 0.7336 | 31400 | 0.0 | - |
|
814 |
+
| 0.7348 | 31450 | 0.0 | - |
|
815 |
+
| 0.7360 | 31500 | 0.0 | - |
|
816 |
+
| 0.7371 | 31550 | 0.0 | - |
|
817 |
+
| 0.7383 | 31600 | 0.0001 | - |
|
818 |
+
| 0.7395 | 31650 | 0.0001 | - |
|
819 |
+
| 0.7406 | 31700 | 0.0 | - |
|
820 |
+
| 0.7418 | 31750 | 0.0 | - |
|
821 |
+
| 0.7430 | 31800 | 0.0 | - |
|
822 |
+
| 0.7441 | 31850 | 0.0 | - |
|
823 |
+
| 0.7453 | 31900 | 0.0 | - |
|
824 |
+
| 0.7465 | 31950 | 0.0 | - |
|
825 |
+
| 0.7476 | 32000 | 0.0 | - |
|
826 |
+
| 0.7488 | 32050 | 0.0 | - |
|
827 |
+
| 0.7500 | 32100 | 0.0 | - |
|
828 |
+
| 0.7512 | 32150 | 0.0 | - |
|
829 |
+
| 0.7523 | 32200 | 0.0 | - |
|
830 |
+
| 0.7535 | 32250 | 0.0 | - |
|
831 |
+
| 0.7547 | 32300 | 0.0 | - |
|
832 |
+
| 0.7558 | 32350 | 0.0 | - |
|
833 |
+
| 0.7570 | 32400 | 0.0 | - |
|
834 |
+
| 0.7582 | 32450 | 0.0 | - |
|
835 |
+
| 0.7593 | 32500 | 0.0 | - |
|
836 |
+
| 0.7605 | 32550 | 0.0 | - |
|
837 |
+
| 0.7617 | 32600 | 0.0 | - |
|
838 |
+
| 0.7628 | 32650 | 0.0 | - |
|
839 |
+
| 0.7640 | 32700 | 0.0 | - |
|
840 |
+
| 0.7652 | 32750 | 0.0 | - |
|
841 |
+
| 0.7663 | 32800 | 0.0 | - |
|
842 |
+
| 0.7675 | 32850 | 0.0 | - |
|
843 |
+
| 0.7687 | 32900 | 0.0 | - |
|
844 |
+
| 0.7698 | 32950 | 0.0 | - |
|
845 |
+
| 0.7710 | 33000 | 0.0 | - |
|
846 |
+
| 0.7722 | 33050 | 0.0 | - |
|
847 |
+
| 0.7733 | 33100 | 0.0 | - |
|
848 |
+
| 0.7745 | 33150 | 0.0 | - |
|
849 |
+
| 0.7757 | 33200 | 0.0 | - |
|
850 |
+
| 0.7769 | 33250 | 0.0 | - |
|
851 |
+
| 0.7780 | 33300 | 0.0 | - |
|
852 |
+
| 0.7792 | 33350 | 0.0 | - |
|
853 |
+
| 0.7804 | 33400 | 0.0 | - |
|
854 |
+
| 0.7815 | 33450 | 0.0 | - |
|
855 |
+
| 0.7827 | 33500 | 0.0 | - |
|
856 |
+
| 0.7839 | 33550 | 0.0 | - |
|
857 |
+
| 0.7850 | 33600 | 0.0 | - |
|
858 |
+
| 0.7862 | 33650 | 0.0 | - |
|
859 |
+
| 0.7874 | 33700 | 0.0001 | - |
|
860 |
+
| 0.7885 | 33750 | 0.0 | - |
|
861 |
+
| 0.7897 | 33800 | 0.0 | - |
|
862 |
+
| 0.7909 | 33850 | 0.0 | - |
|
863 |
+
| 0.7920 | 33900 | 0.0 | - |
|
864 |
+
| 0.7932 | 33950 | 0.0 | - |
|
865 |
+
| 0.7944 | 34000 | 0.0 | - |
|
866 |
+
| 0.7955 | 34050 | 0.0 | - |
|
867 |
+
| 0.7967 | 34100 | 0.0 | - |
|
868 |
+
| 0.7979 | 34150 | 0.0 | - |
|
869 |
+
| 0.7990 | 34200 | 0.0 | - |
|
870 |
+
| 0.8002 | 34250 | 0.0 | - |
|
871 |
+
| 0.8014 | 34300 | 0.0 | - |
|
872 |
+
| 0.8026 | 34350 | 0.0 | - |
|
873 |
+
| 0.8037 | 34400 | 0.0 | - |
|
874 |
+
| 0.8049 | 34450 | 0.0 | - |
|
875 |
+
| 0.8061 | 34500 | 0.0 | - |
|
876 |
+
| 0.8072 | 34550 | 0.0 | - |
|
877 |
+
| 0.8084 | 34600 | 0.0 | - |
|
878 |
+
| 0.8096 | 34650 | 0.0 | - |
|
879 |
+
| 0.8107 | 34700 | 0.0 | - |
|
880 |
+
| 0.8119 | 34750 | 0.0 | - |
|
881 |
+
| 0.8131 | 34800 | 0.0 | - |
|
882 |
+
| 0.8142 | 34850 | 0.0 | - |
|
883 |
+
| 0.8154 | 34900 | 0.0 | - |
|
884 |
+
| 0.8166 | 34950 | 0.0 | - |
|
885 |
+
| 0.8177 | 35000 | 0.0 | - |
|
886 |
+
| 0.8189 | 35050 | 0.0 | - |
|
887 |
+
| 0.8201 | 35100 | 0.0 | - |
|
888 |
+
| 0.8212 | 35150 | 0.0 | - |
|
889 |
+
| 0.8224 | 35200 | 0.0 | - |
|
890 |
+
| 0.8236 | 35250 | 0.0 | - |
|
891 |
+
| 0.8247 | 35300 | 0.0 | - |
|
892 |
+
| 0.8259 | 35350 | 0.0 | - |
|
893 |
+
| 0.8271 | 35400 | 0.0 | - |
|
894 |
+
| 0.8283 | 35450 | 0.0 | - |
|
895 |
+
| 0.8294 | 35500 | 0.0 | - |
|
896 |
+
| 0.8306 | 35550 | 0.0 | - |
|
897 |
+
| 0.8318 | 35600 | 0.0 | - |
|
898 |
+
| 0.8329 | 35650 | 0.0 | - |
|
899 |
+
| 0.8341 | 35700 | 0.0 | - |
|
900 |
+
| 0.8353 | 35750 | 0.0 | - |
|
901 |
+
| 0.8364 | 35800 | 0.0 | - |
|
902 |
+
| 0.8376 | 35850 | 0.0 | - |
|
903 |
+
| 0.8388 | 35900 | 0.0 | - |
|
904 |
+
| 0.8399 | 35950 | 0.0 | - |
|
905 |
+
| 0.8411 | 36000 | 0.0 | - |
|
906 |
+
| 0.8423 | 36050 | 0.0 | - |
|
907 |
+
| 0.8434 | 36100 | 0.0 | - |
|
908 |
+
| 0.8446 | 36150 | 0.0 | - |
|
909 |
+
| 0.8458 | 36200 | 0.0 | - |
|
910 |
+
| 0.8469 | 36250 | 0.0 | - |
|
911 |
+
| 0.8481 | 36300 | 0.0 | - |
|
912 |
+
| 0.8493 | 36350 | 0.0 | - |
|
913 |
+
| 0.8504 | 36400 | 0.0 | - |
|
914 |
+
| 0.8516 | 36450 | 0.0 | - |
|
915 |
+
| 0.8528 | 36500 | 0.0 | - |
|
916 |
+
| 0.8540 | 36550 | 0.0 | - |
|
917 |
+
| 0.8551 | 36600 | 0.0 | - |
|
918 |
+
| 0.8563 | 36650 | 0.0 | - |
|
919 |
+
| 0.8575 | 36700 | 0.0 | - |
|
920 |
+
| 0.8586 | 36750 | 0.0 | - |
|
921 |
+
| 0.8598 | 36800 | 0.0 | - |
|
922 |
+
| 0.8610 | 36850 | 0.0 | - |
|
923 |
+
| 0.8621 | 36900 | 0.0 | - |
|
924 |
+
| 0.8633 | 36950 | 0.0 | - |
|
925 |
+
| 0.8645 | 37000 | 0.0 | - |
|
926 |
+
| 0.8656 | 37050 | 0.0 | - |
|
927 |
+
| 0.8668 | 37100 | 0.0 | - |
|
928 |
+
| 0.8680 | 37150 | 0.0 | - |
|
929 |
+
| 0.8691 | 37200 | 0.0 | - |
|
930 |
+
| 0.8703 | 37250 | 0.0 | - |
|
931 |
+
| 0.8715 | 37300 | 0.0 | - |
|
932 |
+
| 0.8726 | 37350 | 0.0 | - |
|
933 |
+
| 0.8738 | 37400 | 0.0 | - |
|
934 |
+
| 0.8750 | 37450 | 0.0 | - |
|
935 |
+
| 0.8761 | 37500 | 0.0 | - |
|
936 |
+
| 0.8773 | 37550 | 0.0 | - |
|
937 |
+
| 0.8785 | 37600 | 0.0 | - |
|
938 |
+
| 0.8797 | 37650 | 0.0 | - |
|
939 |
+
| 0.8808 | 37700 | 0.0 | - |
|
940 |
+
| 0.8820 | 37750 | 0.0 | - |
|
941 |
+
| 0.8832 | 37800 | 0.0 | - |
|
942 |
+
| 0.8843 | 37850 | 0.0 | - |
|
943 |
+
| 0.8855 | 37900 | 0.0 | - |
|
944 |
+
| 0.8867 | 37950 | 0.0 | - |
|
945 |
+
| 0.8878 | 38000 | 0.0 | - |
|
946 |
+
| 0.8890 | 38050 | 0.0 | - |
|
947 |
+
| 0.8902 | 38100 | 0.0 | - |
|
948 |
+
| 0.8913 | 38150 | 0.0 | - |
|
949 |
+
| 0.8925 | 38200 | 0.0 | - |
|
950 |
+
| 0.8937 | 38250 | 0.0 | - |
|
951 |
+
| 0.8948 | 38300 | 0.0 | - |
|
952 |
+
| 0.8960 | 38350 | 0.0 | - |
|
953 |
+
| 0.8972 | 38400 | 0.0 | - |
|
954 |
+
| 0.8983 | 38450 | 0.0 | - |
|
955 |
+
| 0.8995 | 38500 | 0.0 | - |
|
956 |
+
| 0.9007 | 38550 | 0.0 | - |
|
957 |
+
| 0.9018 | 38600 | 0.0 | - |
|
958 |
+
| 0.9030 | 38650 | 0.0 | - |
|
959 |
+
| 0.9042 | 38700 | 0.0 | - |
|
960 |
+
| 0.9054 | 38750 | 0.0 | - |
|
961 |
+
| 0.9065 | 38800 | 0.0 | - |
|
962 |
+
| 0.9077 | 38850 | 0.0 | - |
|
963 |
+
| 0.9089 | 38900 | 0.0 | - |
|
964 |
+
| 0.9100 | 38950 | 0.0 | - |
|
965 |
+
| 0.9112 | 39000 | 0.0 | - |
|
966 |
+
| 0.9124 | 39050 | 0.0 | - |
|
967 |
+
| 0.9135 | 39100 | 0.0 | - |
|
968 |
+
| 0.9147 | 39150 | 0.0 | - |
|
969 |
+
| 0.9159 | 39200 | 0.0 | - |
|
970 |
+
| 0.9170 | 39250 | 0.0 | - |
|
971 |
+
| 0.9182 | 39300 | 0.0 | - |
|
972 |
+
| 0.9194 | 39350 | 0.0 | - |
|
973 |
+
| 0.9205 | 39400 | 0.0 | - |
|
974 |
+
| 0.9217 | 39450 | 0.0 | - |
|
975 |
+
| 0.9229 | 39500 | 0.0 | - |
|
976 |
+
| 0.9240 | 39550 | 0.0 | - |
|
977 |
+
| 0.9252 | 39600 | 0.0 | - |
|
978 |
+
| 0.9264 | 39650 | 0.0 | - |
|
979 |
+
| 0.9275 | 39700 | 0.0 | - |
|
980 |
+
| 0.9287 | 39750 | 0.0 | - |
|
981 |
+
| 0.9299 | 39800 | 0.0 | - |
|
982 |
+
| 0.9311 | 39850 | 0.0 | - |
|
983 |
+
| 0.9322 | 39900 | 0.0 | - |
|
984 |
+
| 0.9334 | 39950 | 0.0 | - |
|
985 |
+
| 0.9346 | 40000 | 0.0 | - |
|
986 |
+
| 0.9357 | 40050 | 0.0 | - |
|
987 |
+
| 0.9369 | 40100 | 0.0 | - |
|
988 |
+
| 0.9381 | 40150 | 0.0 | - |
|
989 |
+
| 0.9392 | 40200 | 0.0 | - |
|
990 |
+
| 0.9404 | 40250 | 0.0 | - |
|
991 |
+
| 0.9416 | 40300 | 0.0001 | - |
|
992 |
+
| 0.9427 | 40350 | 0.0 | - |
|
993 |
+
| 0.9439 | 40400 | 0.0 | - |
|
994 |
+
| 0.9451 | 40450 | 0.0 | - |
|
995 |
+
| 0.9462 | 40500 | 0.0 | - |
|
996 |
+
| 0.9474 | 40550 | 0.0 | - |
|
997 |
+
| 0.9486 | 40600 | 0.0 | - |
|
998 |
+
| 0.9497 | 40650 | 0.0 | - |
|
999 |
+
| 0.9509 | 40700 | 0.0 | - |
|
1000 |
+
| 0.9521 | 40750 | 0.0 | - |
|
1001 |
+
| 0.9532 | 40800 | 0.0 | - |
|
1002 |
+
| 0.9544 | 40850 | 0.0 | - |
|
1003 |
+
| 0.9556 | 40900 | 0.0 | - |
|
1004 |
+
| 0.9568 | 40950 | 0.0 | - |
|
1005 |
+
| 0.9579 | 41000 | 0.0 | - |
|
1006 |
+
| 0.9591 | 41050 | 0.0 | - |
|
1007 |
+
| 0.9603 | 41100 | 0.0 | - |
|
1008 |
+
| 0.9614 | 41150 | 0.0 | - |
|
1009 |
+
| 0.9626 | 41200 | 0.0 | - |
|
1010 |
+
| 0.9638 | 41250 | 0.0 | - |
|
1011 |
+
| 0.9649 | 41300 | 0.0 | - |
|
1012 |
+
| 0.9661 | 41350 | 0.0 | - |
|
1013 |
+
| 0.9673 | 41400 | 0.0 | - |
|
1014 |
+
| 0.9684 | 41450 | 0.0 | - |
|
1015 |
+
| 0.9696 | 41500 | 0.0 | - |
|
1016 |
+
| 0.9708 | 41550 | 0.0 | - |
|
1017 |
+
| 0.9719 | 41600 | 0.0 | - |
|
1018 |
+
| 0.9731 | 41650 | 0.0 | - |
|
1019 |
+
| 0.9743 | 41700 | 0.0 | - |
|
1020 |
+
| 0.9754 | 41750 | 0.0 | - |
|
1021 |
+
| 0.9766 | 41800 | 0.0 | - |
|
1022 |
+
| 0.9778 | 41850 | 0.0 | - |
|
1023 |
+
| 0.9789 | 41900 | 0.0 | - |
|
1024 |
+
| 0.9801 | 41950 | 0.0 | - |
|
1025 |
+
| 0.9813 | 42000 | 0.0 | - |
|
1026 |
+
| 0.9825 | 42050 | 0.0 | - |
|
1027 |
+
| 0.9836 | 42100 | 0.0 | - |
|
1028 |
+
| 0.9848 | 42150 | 0.0 | - |
|
1029 |
+
| 0.9860 | 42200 | 0.0 | - |
|
1030 |
+
| 0.9871 | 42250 | 0.0 | - |
|
1031 |
+
| 0.9883 | 42300 | 0.0 | - |
|
1032 |
+
| 0.9895 | 42350 | 0.0 | - |
|
1033 |
+
| 0.9906 | 42400 | 0.0 | - |
|
1034 |
+
| 0.9918 | 42450 | 0.0 | - |
|
1035 |
+
| 0.9930 | 42500 | 0.0 | - |
|
1036 |
+
| 0.9941 | 42550 | 0.0 | - |
|
1037 |
+
| 0.9953 | 42600 | 0.0 | - |
|
1038 |
+
| 0.9965 | 42650 | 0.0 | - |
|
1039 |
+
| 0.9976 | 42700 | 0.0 | - |
|
1040 |
+
| 0.9988 | 42750 | 0.0 | - |
|
1041 |
+
| 1.0000 | 42800 | 0.0 | - |
|
1042 |
+
|
1043 |
+
### Framework Versions
|
1044 |
+
- Python: 3.10.12
|
1045 |
+
- SetFit: 1.0.3
|
1046 |
+
- Sentence Transformers: 2.5.1
|
1047 |
+
- Transformers: 4.38.1
|
1048 |
+
- PyTorch: 2.1.0+cu121
|
1049 |
+
- Datasets: 2.18.0
|
1050 |
+
- Tokenizers: 0.15.2
|
1051 |
+
|
1052 |
+
## Citation
|
1053 |
+
|
1054 |
+
### BibTeX
|
1055 |
+
```bibtex
|
1056 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
1057 |
+
doi = {10.48550/ARXIV.2209.11055},
|
1058 |
+
url = {https://arxiv.org/abs/2209.11055},
|
1059 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
1060 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
1061 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
1062 |
+
publisher = {arXiv},
|
1063 |
+
year = {2022},
|
1064 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
1065 |
+
}
|
1066 |
+
```
|
1067 |
+
|
1068 |
+
<!--
|
1069 |
+
## Glossary
|
1070 |
+
|
1071 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1072 |
+
-->
|
1073 |
+
|
1074 |
+
<!--
|
1075 |
+
## Model Card Authors
|
1076 |
+
|
1077 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1078 |
+
-->
|
1079 |
+
|
1080 |
+
<!--
|
1081 |
+
## Model Card Contact
|
1082 |
+
|
1083 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1084 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-small-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.38.1",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.28.1",
|
5 |
+
"pytorch": "1.13.0+cu117"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"pit",
|
5 |
+
"peak",
|
6 |
+
"neither"
|
7 |
+
]
|
8 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b32094f697f7fd07df0ca2b1b55717e1b06b7dbdd7b4c94a7292ef23e9ae6f28
|
3 |
+
size 133462128
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22bd52bc19cbbb2bd9831e1f97526a9b3084f2ebb335ed5a688a432dbc8dfd3f
|
3 |
+
size 10111
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|