--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy - f1 - precision - recall widget: - text: man, product/whatever is my new best friend. i like product but the integration of product into office and product is a lot of fun. i just spent the day feeding it my training presentation i'm preparing in my day job and it was very helpful. almost better than humans. - text: that's great news! product is the perfect platform to share these advanced product prompts and help more users get the most out of it! - text: after only one week's trial of the new product with brand enabled, i have replaced my default browser product that i was using for more than 7 years with new product. i no longer need to spend a lot of time finding answers from a bunch of search results and web pages. it's amazing - text: very impressive. brand is finally fighting back. i am just a little worried about the scalability of such a high context window size, since even in their demos it took quite a while to process everything. regardless, i am very interested in seeing what types of capabilities a >1m token size window can unleash. - text: product the way it shows the sources is so fucking cool, this new ai is amazing pipeline_tag: text-classification inference: true base_model: BAAI/bge-base-en-v1.5 model-index: - name: SetFit with BAAI/bge-base-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7876447876447876 name: Accuracy - type: f1 value: - 0.3720930232558139 - 0.4528301886792453 - 0.8720379146919431 name: F1 - type: precision value: - 0.23529411764705882 - 0.3 - 0.9945945945945946 name: Precision - type: recall value: - 0.8888888888888888 - 0.9230769230769231 - 0.7763713080168776 name: Recall --- # SetFit with BAAI/bge-base-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit) ### Model Labels | Label | Examples | |:--------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | neither | | | peak | | | pit | | ## Evaluation ### Metrics | Label | Accuracy | F1 | Precision | Recall | |:--------|:---------|:-------------------------------------------------------------|:-----------------------------------------------|:-------------------------------------------------------------| | **all** | 0.7876 | [0.3720930232558139, 0.4528301886792453, 0.8720379146919431] | [0.23529411764705882, 0.3, 0.9945945945945946] | [0.8888888888888888, 0.9230769230769231, 0.7763713080168776] | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("jamiehudson/725_32batch_150_sample") # Run inference preds = model("product the way it shows the sources is so fucking cool, this new ai is amazing") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 9 | 37.1711 | 98 | | Label | Training Sample Count | |:--------|:----------------------| | pit | 150 | | peak | 150 | | neither | 150 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0000 | 1 | 0.2383 | - | | 0.0119 | 50 | 0.2395 | - | | 0.0237 | 100 | 0.2129 | - | | 0.0356 | 150 | 0.1317 | - | | 0.0474 | 200 | 0.0695 | - | | 0.0593 | 250 | 0.01 | - | | 0.0711 | 300 | 0.0063 | - | | 0.0830 | 350 | 0.0028 | - | | 0.0948 | 400 | 0.0026 | - | | 0.1067 | 450 | 0.0021 | - | | 0.1185 | 500 | 0.0018 | - | | 0.1304 | 550 | 0.0016 | - | | 0.1422 | 600 | 0.0014 | - | | 0.1541 | 650 | 0.0015 | - | | 0.1659 | 700 | 0.0013 | - | | 0.1778 | 750 | 0.0012 | - | | 0.1896 | 800 | 0.0012 | - | | 0.2015 | 850 | 0.0012 | - | | 0.2133 | 900 | 0.0011 | - | | 0.2252 | 950 | 0.0011 | - | | 0.2370 | 1000 | 0.0009 | - | | 0.2489 | 1050 | 0.001 | - | | 0.2607 | 1100 | 0.0009 | - | | 0.2726 | 1150 | 0.0008 | - | | 0.2844 | 1200 | 0.0008 | - | | 0.2963 | 1250 | 0.0009 | - | | 0.3081 | 1300 | 0.0008 | - | | 0.3200 | 1350 | 0.0007 | - | | 0.3318 | 1400 | 0.0007 | - | | 0.3437 | 1450 | 0.0007 | - | | 0.3555 | 1500 | 0.0006 | - | | 0.3674 | 1550 | 0.0007 | - | | 0.3792 | 1600 | 0.0007 | - | | 0.3911 | 1650 | 0.0008 | - | | 0.4029 | 1700 | 0.0006 | - | | 0.4148 | 1750 | 0.0006 | - | | 0.4266 | 1800 | 0.0006 | - | | 0.4385 | 1850 | 0.0006 | - | | 0.4503 | 1900 | 0.0006 | - | | 0.4622 | 1950 | 0.0006 | - | | 0.4740 | 2000 | 0.0006 | - | | 0.4859 | 2050 | 0.0005 | - | | 0.4977 | 2100 | 0.0006 | - | | 0.5096 | 2150 | 0.0006 | - | | 0.5215 | 2200 | 0.0005 | - | | 0.5333 | 2250 | 0.0005 | - | | 0.5452 | 2300 | 0.0005 | - | | 0.5570 | 2350 | 0.0006 | - | | 0.5689 | 2400 | 0.0005 | - | | 0.5807 | 2450 | 0.0005 | - | | 0.5926 | 2500 | 0.0006 | - | | 0.6044 | 2550 | 0.0006 | - | | 0.6163 | 2600 | 0.0005 | - | | 0.6281 | 2650 | 0.0005 | - | | 0.6400 | 2700 | 0.0005 | - | | 0.6518 | 2750 | 0.0005 | - | | 0.6637 | 2800 | 0.0005 | - | | 0.6755 | 2850 | 0.0005 | - | | 0.6874 | 2900 | 0.0005 | - | | 0.6992 | 2950 | 0.0004 | - | | 0.7111 | 3000 | 0.0004 | - | | 0.7229 | 3050 | 0.0004 | - | | 0.7348 | 3100 | 0.0005 | - | | 0.7466 | 3150 | 0.0005 | - | | 0.7585 | 3200 | 0.0005 | - | | 0.7703 | 3250 | 0.0004 | - | | 0.7822 | 3300 | 0.0004 | - | | 0.7940 | 3350 | 0.0004 | - | | 0.8059 | 3400 | 0.0004 | - | | 0.8177 | 3450 | 0.0004 | - | | 0.8296 | 3500 | 0.0004 | - | | 0.8414 | 3550 | 0.0004 | - | | 0.8533 | 3600 | 0.0004 | - | | 0.8651 | 3650 | 0.0004 | - | | 0.8770 | 3700 | 0.0004 | - | | 0.8888 | 3750 | 0.0004 | - | | 0.9007 | 3800 | 0.0004 | - | | 0.9125 | 3850 | 0.0004 | - | | 0.9244 | 3900 | 0.0005 | - | | 0.9362 | 3950 | 0.0004 | - | | 0.9481 | 4000 | 0.0004 | - | | 0.9599 | 4050 | 0.0004 | - | | 0.9718 | 4100 | 0.0004 | - | | 0.9836 | 4150 | 0.0004 | - | | 0.9955 | 4200 | 0.0004 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.5.1 - Transformers: 4.38.1 - PyTorch: 2.1.0+cu121 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```