jamesHD2001
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- EleutherAI/pile
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
---
|
7 |
+
|
8 |
+
# DenseRetNet-350M
|
9 |
+
|
10 |
+
An unofficial pretraining checkpoints for DenseRetNet-1.3B of paper DenseMamba: https://arxiv.org/abs/2403.00818, the trainig data is 15B tokens randomly samples from The Pile dataset.
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
- recurrent generation examples:
|
15 |
+
|
16 |
+
```python
|
17 |
+
import torch
|
18 |
+
import transformers
|
19 |
+
model_name_or_path = '/path to model'
|
20 |
+
MAX_NEW_TOKENS = 256
|
21 |
+
inference_dtype = torch.float16
|
22 |
+
|
23 |
+
generation_config = transformers.GenerationConfig(
|
24 |
+
do_sample=False,
|
25 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
26 |
+
)
|
27 |
+
|
28 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False, trust_remote_code=True)
|
29 |
+
config = transformers.AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
|
30 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
31 |
+
model_name_or_path, torch_dtype=torch.float16, trust_remote_code=True) # .cuda()
|
32 |
+
model.cuda()
|
33 |
+
model = model.half()
|
34 |
+
model.eval()
|
35 |
+
input_sents = 'I have a dream'
|
36 |
+
inputs = tokenizer(input_sents, return_tensors="pt", truncation=True, max_length=2048)
|
37 |
+
output = model.generate(input_ids=inputs["input_ids"].cuda(),
|
38 |
+
generation_config=generation_config,
|
39 |
+
return_dict_in_generate=True,
|
40 |
+
output_scores=True
|
41 |
+
)
|
42 |
+
output = tokenizer.decode(output[0].tolist(), skip_special_tokens=True)
|
43 |
+
print(output)
|
44 |
+
```
|