File size: 42,829 Bytes
51a741e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 |
# coding=utf-8
# Copyright 2022 EleutherAI and the Huggingface Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Pytorch DenseGAU RetNet model."""
from typing import List, Optional, Tuple, Union
import math
import torch
import torch.utils.checkpoint
import torch.nn.functional as F
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, \
SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, \
replace_return_docstrings
from transformers import top_k_top_p_filtering
from transformers.generation.configuration_utils import GenerationConfig
from .configuration_dense_gau_retnet import DenseGauRetNetConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DenseGauRetNetConfig"
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm
class DenseGauRetNetRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return (self.weight * hidden_states).to(input_dtype)
# added for retention
# Copied from https://github.com/microsoft/torchscale/blob/main/torchscale/component/multiscale_retention.py
def rotate_every_two(x):
x1 = x[:, :, :, ::2]
x2 = x[:, :, :, 1::2]
x = torch.stack((-x2, x1), dim=-1)
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\
def theta_shift(x, sin, cos):
return (x * cos) + (rotate_every_two(x) * sin)
#Parameter efficient HiddenProjection
class HiddenProjection(nn.Module):
def __init__(self, input_dim, mid_reduction_ratio=16, final_reduction_ratio=4):
super(HiddenProjection, self).__init__()
self.fc1 = nn.Linear(input_dim, input_dim // mid_reduction_ratio, bias=False)
self.fc2 = nn.Linear(input_dim // mid_reduction_ratio, int(input_dim // final_reduction_ratio), bias=False)
def forward(self, x):
fc1_output = F.silu(self.fc1(x))
fc2_output = self.fc2(fc1_output)
return fc2_output
# Copied and modified from transformers.models.bart.modeling_bart._expand_mask
class MultiScaleGauRetention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DenseGauRetNetConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.query_key_dim = config.query_key_dim
self.num_heads = config.num_attention_heads
self.factor = config.v_factor
self.head_dim = config.hidden_size * self.factor // self.num_heads
self.max_position_embeddings = config.max_position_embeddings
self.q_proj = nn.Linear(self.hidden_size, self.query_key_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.query_key_dim, bias=False)
self.key_dim = self.query_key_dim // self.num_heads
self.scaling = self.key_dim ** -0.5
self.expansion_dim = int(config.hidden_size * self.factor)
self.group_norm = DenseGauRetNetRMSNorm(self.expansion_dim // config.num_attention_heads, eps=config.rms_norm_eps)
self.to_hidden = nn.Sequential(
nn.Linear(config.hidden_size, self.expansion_dim * 2, bias=False),
nn.SiLU()
)
self.to_out = nn.Sequential(
nn.Linear(self.expansion_dim, config.hidden_size, bias=False),
nn.Dropout(0)
)
self.config = config
self.k_select = HiddenProjection(self.hidden_size, config.intermediate_k_select_scale, 2)
self.v_select = HiddenProjection(self.hidden_size, config.intermediate_v_select_scale, 0.5)
self.k_norm = DenseGauRetNetRMSNorm(self.query_key_dim, eps=config.rms_norm_eps)
self.v_norm = DenseGauRetNetRMSNorm(self.expansion_dim, eps=config.rms_norm_eps)
if config.deepnorm:
self.alpha = math.pow(2.0 * config.num_hidden_layers, 0.25)
else:
self.alpha = 1.0
self.dropout_module = torch.nn.Dropout(config.dropout)
self.reset_parameters()
#
def reset_parameters(self):
nn.init.xavier_uniform_(self.q_proj.weight, gain=2 ** -2.5)
nn.init.xavier_uniform_(self.k_proj.weight, gain=2 ** -2.5)
nn.init.xavier_uniform_(self.k_select.fc1.weight, gain=2 ** -2.5)
nn.init.xavier_uniform_(self.k_select.fc2.weight, gain=2 ** -2.5)
nn.init.xavier_uniform_(self.v_select.fc1.weight, gain=2 ** -2.5)
nn.init.xavier_uniform_(self.v_select.fc2.weight, gain=2 ** -2.5)
for module in self.to_out.modules():
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -1)
for module in self.to_hidden.modules():
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
def forward(
self,
forward_impl: 'parallel',
hidden_states: torch.Tensor,
rel_pos,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
k_features=None, # dense
v_features=None, # dense
dense=False,
dense_layers=0,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, tgt_len, _ = hidden_states.size()
(sin, cos), inner_mask = rel_pos
x = hidden_states
q = F.silu(self.q_proj(x))
k = F.silu(self.k_proj(x))
v, gate = self.to_hidden(x).chunk(2, dim=-1)
k *= self.scaling
k_curr = k
v_curr = v
if dense:
k_gate = self.k_select(hidden_states.clone())
for i, k_past in enumerate(k_features):
k = k.clone() + F.silu(k_gate) * k_past
k = self.k_norm(k)
v_gate = self.v_select(hidden_states.clone())
for i, v_past in enumerate(v_features):
v = v.clone() + F.silu(v_gate) * v_past
v = self.v_norm(v)
q = q.view(bsz, tgt_len, self.num_heads, self.key_dim).transpose(1, 2)
k = k.view(bsz, tgt_len, self.num_heads, self.key_dim).transpose(1, 2)
qr = theta_shift(q, sin, cos)
kr = theta_shift(k, sin, cos)
if forward_impl == 'parallel':
output = self.parallel_forward(qr, kr, v, inner_mask)
elif forward_impl == 'recurrent':
output, past_key_value = self.recurrent_forward(qr, kr, v, inner_mask, past_key_value=past_key_value)
output = self.group_norm(output)
output = output.reshape(bsz, tgt_len, self.expansion_dim) * gate # gate
output = self.to_out(output)
output = self.dropout_module(output)
return output, past_key_value, k_curr, v_curr
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
# retntion parallel forward
def recurrent_forward(
self,
qr, kr, v,
decay,
past_key_value,
):
bsz = v.size(0)
v = v.view(bsz, self.num_heads, self.head_dim, 1)
kv = kr * v
if "prev_key_value" in past_key_value:
prev_kv = past_key_value["prev_key_value"]
prev_scale = past_key_value["scale"]
scale = prev_scale * decay + 1
kv = prev_kv * (prev_scale.sqrt() * decay / scale.sqrt()).view(self.num_heads, 1,
1) + kv / scale.sqrt().view(self.num_heads,
1, 1)
else:
scale = torch.ones_like(decay)
past_key_value["prev_key_value"] = kv
past_key_value["scale"] = scale
output = torch.sum(qr * kv, dim=3)
return output, past_key_value
def parallel_forward(self, qr, kr, v, mask):
bsz, tgt_len, embed_dim = v.size()
vr = v.view(bsz, tgt_len, self.num_heads, self.expansion_dim // self.num_heads).transpose(1, 2)
qk_mat = qr @ kr.transpose(-1, -2) # bsz * m * tgt_len * tgt_len
qk_mat = qk_mat * mask
# invariant after normalization
qk_mat = qk_mat / qk_mat.detach().abs().sum(dim=-1, keepdim=True).clamp(min=1, max=5e4)
output = torch.matmul(qk_mat, vr)
output = output.transpose(1, 2)
return output
class DenseGauRetNetDecoderLayer(nn.Module):
def __init__(self, config: DenseGauRetNetConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MultiScaleGauRetention(config=config)
self.input_layernorm = DenseGauRetNetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
if config.deepnorm:
self.alpha = math.pow(2.0 * config.num_hidden_layers, 0.25)
else:
self.alpha = 1.0
def forward(
self,
hidden_states: torch.Tensor,
rel_pos=None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
k_features: Optional[List] = [],
v_features: Optional[List] = [],
dense=False,
dense_layers=0,
forward_impl: str = 'parallel',
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, past_key_value, k_curr, v_curr = self.self_attn(
hidden_states=hidden_states,
rel_pos=rel_pos,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
k_features=k_features,
v_features=v_features,
dense=dense,
dense_layers=dense_layers,
forward_impl=forward_impl,
)
hidden_states = residual + hidden_states
return hidden_states, past_key_value, k_curr, v_curr
DenseGauRetNet_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Pytorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular Pytorch Module and refer to the Pytorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`DenseGauRetNetConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare DenseGauRetNet Model outputting raw hidden-states without any specific head on top.",
DenseGauRetNet_START_DOCSTRING,
)
class DenseGauRetNetPreTrainedModel(PreTrainedModel):
config_class = DenseGauRetNetConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DenseGauRetNetDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, DenseGauRetNetModel):
module.gradient_checkpointing = value
DenseGauRetNet_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class RetNetRelPos(nn.Module):
def __init__(self, decoder_embed_dim, decoder_retention_heads, query_key_dim):
super().__init__()
angle = 1.0 / (10000 ** torch.linspace(0, 1, (query_key_dim // decoder_retention_heads) // 2))
angle = angle.unsqueeze(-1).repeat(1, 2).flatten()
decay = torch.log(1 - 2 ** (-5 - torch.arange(decoder_retention_heads, dtype=torch.float)))
self.register_buffer("angle", angle)
self.register_buffer("decay", decay)
def forward(self, slen, activate_recurrent=False):
if activate_recurrent:
sin = torch.sin(self.angle * (slen - 1))
cos = torch.cos(self.angle * (slen - 1))
retention_rel_pos = ((sin, cos), self.decay.exp())
else:
index = torch.arange(slen).to(self.decay)
sin = torch.sin(index[:, None] * self.angle[None, :])
cos = torch.cos(index[:, None] * self.angle[None, :])
mask = torch.tril(torch.ones(slen, slen).to(self.decay))
mask = torch.masked_fill(index[:, None] - index[None, :], ~mask.bool(), float("inf"))
mask = torch.exp(mask * self.decay[:, None, None])
mask = torch.nan_to_num(mask)
mask = mask / mask.sum(dim=-1, keepdim=True).sqrt()
retention_rel_pos = ((sin, cos), mask)
return retention_rel_pos
@add_start_docstrings(
"The bare DenseGauRetNet Model outputting raw hidden-states without any specific head on top.",
DenseGauRetNet_START_DOCSTRING,
)
class DenseGauRetNetModel(DenseGauRetNetPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DenseGauRetNetDecoderLayer`]
Args:
config: DenseGauRetNetConfig
"""
def __init__(self, config: DenseGauRetNetConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([DenseGauRetNetDecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.norm = DenseGauRetNetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
self.retnet_rel_pos = RetNetRelPos(config.hidden_size, config.num_attention_heads,
config.query_key_dim)
if config.deepnorm:
init_scale = math.pow(8.0 * config.num_hidden_layers, 0.25)
for name, p in self.named_parameters():
if (
"fc1" in name
or "fc2" in name
or "gate_proj" in name
or "down_proj" in name
or "up_proj" in name
or "out_proj" in name
or "v_proj" in name
or "to_hidden" in name
or "to_output" in name
):
p.data.div_(init_scale)
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def is_first_step(self, incremental_state):
if incremental_state is None:
return False
return incremental_state.get("is_first_step", False)
@add_start_docstrings_to_model_forward(DenseGauRetNet_INPUTS_DOCSTRING)
def forward(
self,
forward_impl: Optional[str] = 'parallel',
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
sequence_offset=0,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layer
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = [] if use_cache else None
#
k_features = []
v_features = []
dense_layers = 0
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None and len(
past_key_values) != 0 else {}
slen = input_ids.size(1)
if forward_impl == 'recurrent':
slen = sequence_offset
rel_pos = self.retnet_rel_pos(slen, forward_impl == 'recurrent',)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions, None)
return custom_forward
hidden_states = layer_outputslayer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
)
else:
dense = False
if idx >= 1:
dense = True
layer_outputs, past_key_value, k_curr, v_curr = decoder_layer(
hidden_states,
rel_pos,
forward_impl=forward_impl,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
k_features=k_features,
v_features=v_features,
dense=dense,
dense_layers=dense_layers,
)
dense_layers += 1
k_features.append(k_curr)
v_features.append(v_curr)
if len(k_features) > self.config.dense_block_layers:
k_features.pop(0)
if len(v_features) > self.config.dense_block_layers:
v_features.pop(0)
hidden_states = layer_outputs # used to be 3 ele,tmp 1
if use_cache:
next_decoder_cache.append(past_key_value)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class DenseGauRetNetForCausalLM(DenseGauRetNetPreTrainedModel):
_auto_class = "AutoModelForCausalLM"
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = DenseGauRetNetModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(DenseGauRetNet_INPUTS_DOCSTRING)
# @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
forward_impl: str = 'parallel',
sequence_offset=0,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
forward_impl=forward_impl,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
sequence_offset=sequence_offset,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
# infer mode
def sample_token(self, logit, do_sample=False, top_k=1, top_p=1.0, temperature=1.0):
if not do_sample:
return torch.argmax(logit, dim=-1, keepdim=True)
filtered = top_k_top_p_filtering(logit / temperature, top_k=top_k, top_p=top_p)
return torch.multinomial(torch.softmax(filtered, dim=-1), num_samples=1)
@torch.inference_mode()
def generate(
self,
input_ids: Optional[torch.Tensor] = None,
parallel_compute_prompt=False,
generation_config: Optional[GenerationConfig] = None,
**kwargs,
):
# breakpoint()
past_key_values = {}
for p_i in range(input_ids.shape[1] - 1):
outputs = self(input_ids[:, p_i:p_i + 1],
forward_impl='recurrent',
past_key_values=past_key_values,
sequence_offset=p_i,
return_dict=True,
use_cache=True)
past_key_values = outputs.past_key_values
generated = input_ids[:, -1].unsqueeze(-1) # [B, 1]
for i in range(generation_config.max_new_tokens):
outputs = self(generated[:,-1:],
forward_impl='recurrent',
past_key_values=past_key_values,
use_cache=True,
return_dict=True,
sequence_offset=input_ids.shape[-1]+generated.shape[-1]-2 #1
)
logit = outputs.logits[:, -1, :] # [batch_size, vocab_size]
past_key_values = outputs.past_key_values
token = self.sample_token(logit,
do_sample=generation_config.do_sample,
temperature=generation_config.temperature)
generated = torch.cat([generated, token], dim=-1)
return generated[:,1:]
@add_start_docstrings(
"""
The DenseGauRetNet Model transformer with a sequence classification head on top (linear layer).
[`DenseGauRetNetForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
DenseGauRetNet_START_DOCSTRING,
)
class DenseGauRetNetForSequenceClassification(DenseGauRetNetPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = DenseGauRetNetModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(DenseGauRetNet_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|