File size: 2,921 Bytes
754c7bf
6782623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754c7bf
 
6782623
 
754c7bf
6782623
 
754c7bf
6782623
 
 
 
754c7bf
6782623
754c7bf
6782623
754c7bf
6782623
754c7bf
6782623
754c7bf
6782623
754c7bf
6782623
754c7bf
6782623
754c7bf
6782623
754c7bf
6782623
 
 
 
 
 
 
 
 
 
754c7bf
6782623
754c7bf
6782623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754c7bf
 
6782623
754c7bf
6782623
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
- generated_from_trainer
datasets:
- ami
metrics:
- wer
model-index:
- name: 6e-5_4000eval
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: ami
      type: ami
      config: ihm
      split: None
      args: ihm
    metrics:
    - name: Wer
      type: wer
      value: 0.2470857142857143
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/jadorantes2-utep/%3Cmy-amazing-projecttokenizer6e-5eval4000%3E/runs/c41b6hhn)
# 6e-5_4000eval

This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co./facebook/wav2vec2-base-960h) on the ami dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8508
- Wer: 0.2471

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss | Wer    |
|:-------------:|:--------:|:----:|:---------------:|:------:|
| No log        | 7.5758   | 250  | 5.4590          | 0.9995 |
| 9.3761        | 15.1515  | 500  | 3.7020          | 0.9995 |
| 9.3761        | 22.7273  | 750  | 3.0706          | 0.9995 |
| 3.2176        | 30.3030  | 1000 | 3.0517          | 0.9995 |
| 3.2176        | 37.8788  | 1250 | 1.8920          | 0.7721 |
| 2.0444        | 45.4545  | 1500 | 1.3641          | 0.3488 |
| 2.0444        | 53.0303  | 1750 | 1.1031          | 0.2779 |
| 0.8363        | 60.6061  | 2000 | 1.1269          | 0.2679 |
| 0.8363        | 68.1818  | 2250 | 1.0291          | 0.2656 |
| 0.6824        | 75.7576  | 2500 | 0.9712          | 0.2629 |
| 0.6824        | 83.3333  | 2750 | 0.8902          | 0.2619 |
| 0.5956        | 90.9091  | 3000 | 0.8432          | 0.2441 |
| 0.5956        | 98.4848  | 3250 | 0.8714          | 0.2485 |
| 0.4071        | 106.0606 | 3500 | 0.8222          | 0.2478 |
| 0.4071        | 113.6364 | 3750 | 0.8398          | 0.2501 |
| 0.4479        | 121.2121 | 4000 | 0.8508          | 0.2471 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1