File size: 4,049 Bytes
cc3d147 c076724 cc3d147 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
datasets:
- shenxq/OneVision
- shenxq/VideoChat2
base_model:
- Vision-CAIR/LongVU_Qwen2_7B_img
pipeline_tag: video-text-to-text
model-index:
- name: llava-onevision-qwen-7b-ov
results:
- task:
type: multimodal
dataset:
name: EgoSchema
type: egoschema
metrics:
- type: accuracy
value: 67.6
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MLVU
type: mlvu
metrics:
- type: accuracy
value: 65.4
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MVBench
type: mvbench
metrics:
- type: accuracy
value: 66.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: VideoMME
type: videomme
metrics:
- type: accuracy
value: 60.6
name: accuracy
verified: true
library_name: transformers
---
# LongVU
This repository contains the model based on Qwen2-7B as presented in [LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding](https://huggingface.co./papers/2410.17434).
Play with the model on the [HF demo](https://huggingface.co./spaces/Vision-CAIR/LongVU).
<div align="left">
<a href='https://vision-cair.github.io/LongVU'><img src="https://longvu.s3.amazonaws.com/assets/demo.gif" alt="Demo GIF" style="width: 100%; max-width: 650px;"></a>
</div>
# Use
We provide the simple generation process for using our model. For more details, you could refer to [Github](https://github.com/Vision-CAIR/LongVU)
```python
# git clone https://github.com/Vision-CAIR/LongVU
import numpy as np
import torch
from longvu.builder import load_pretrained_model
from longvu.constants import (
DEFAULT_IMAGE_TOKEN,
IMAGE_TOKEN_INDEX,
)
from longvu.conversation import conv_templates, SeparatorStyle
from longvu.mm_datautils import (
KeywordsStoppingCriteria,
process_images,
tokenizer_image_token,
)
from decord import cpu, VideoReader
tokenizer, model, image_processor, context_len = load_pretrained_model(
"./checkpoints/longvu_qwen", None, "cambrian_qwen",
)
model.eval()
video_path = "./examples/video1.mp4"
qs = "Describe this video in detail"
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
fps = float(vr.get_avg_fps())
frame_indices = np.array([i for i in range(0, len(vr), round(fps),)])
video = []
for frame_index in frame_indices:
img = vr[frame_index].asnumpy()
video.append(img)
video = np.stack(video)
image_sizes = [video[0].shape[:2]]
video = process_images(video, image_processor, model.config)
video = [item.unsqueeze(0) for item in video]
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
conv = conv_templates["qwen"].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=video,
image_sizes=image_sizes,
do_sample=False,
temperature=0.2,
max_new_tokens=128,
use_cache=True,
stopping_criteria=[stopping_criteria],
)
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
```
# Citation
```
@article{shen2024longvu,
title={LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding},
author={Shen, Xiaoqian and Xiong, Yunyang and Zhao, Changsheng and Wu, Lemeng and Chen, Jun and Zhu, Chenchen and Liu, Zechun and Xiao, Fanyi and Varadarajan, Balakrishnan and Bordes, Florian and Liu, Zhuang and Xu, Hu and J. Kim, Hyunwoo and Soran, Bilge and Krishnamoorthi, Raghuraman and Elhoseiny, Mohamed and Chandra, Vikas},
journal={arXiv:2410.17434},
year={2024}
}
``` |