jadechoghari
commited on
Create clip_encoder.py
Browse files- clip_encoder.py +195 -0
clip_encoder.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
|
5 |
+
|
6 |
+
# Added for customized Processor.
|
7 |
+
import math
|
8 |
+
import numpy as np
|
9 |
+
from typing import Dict
|
10 |
+
from transformers.image_utils import PILImageResampling, ChannelDimension
|
11 |
+
from transformers.image_processing_utils import get_size_dict
|
12 |
+
from transformers.image_transforms import (
|
13 |
+
get_resize_output_image_size,
|
14 |
+
resize,
|
15 |
+
)
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
|
19 |
+
class CLIPImageProcessor_Ferret(CLIPImageProcessor):
|
20 |
+
def resize(
|
21 |
+
self,
|
22 |
+
image: np.ndarray,
|
23 |
+
size: Dict[str, int],
|
24 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
25 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
26 |
+
**kwargs,
|
27 |
+
) -> np.ndarray:
|
28 |
+
"""
|
29 |
+
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
|
30 |
+
resized to keep the input aspect ratio.
|
31 |
+
Args:
|
32 |
+
image (`np.ndarray`):
|
33 |
+
Image to resize.
|
34 |
+
size (`Dict[str, int]`):
|
35 |
+
Size of the output image.
|
36 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
37 |
+
Resampling filter to use when resiizing the image.
|
38 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
39 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
40 |
+
"""
|
41 |
+
size = get_size_dict(size, default_to_square=True, height_width_order=True)
|
42 |
+
# Hack: Bypass the shortest_edge detection. We hope to get a {"height": size[0], "width": size[1]}, where w=h.
|
43 |
+
# if "shortest_edge" not in size:
|
44 |
+
# raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}")
|
45 |
+
# output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=True)
|
46 |
+
output_size = get_resize_output_image_size(image, size=(size["height"], size["width"]), default_to_square=True)
|
47 |
+
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
|
48 |
+
|
49 |
+
|
50 |
+
class CLIPVisionTower(nn.Module):
|
51 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
52 |
+
super().__init__()
|
53 |
+
|
54 |
+
self.is_loaded = False
|
55 |
+
|
56 |
+
self.preprocess_type = getattr(args, 'version', 'ferret_v1')
|
57 |
+
self.vision_tower_name = vision_tower
|
58 |
+
self.select_layer = args.mm_vision_select_layer
|
59 |
+
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
|
60 |
+
|
61 |
+
if not delay_load:
|
62 |
+
self.load_model()
|
63 |
+
elif getattr(args, 'unfreeze_mm_vision_tower', False):
|
64 |
+
self.load_model()
|
65 |
+
else:
|
66 |
+
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
|
67 |
+
|
68 |
+
def load_model(self, device_map=None):
|
69 |
+
if self.is_loaded:
|
70 |
+
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
|
71 |
+
return
|
72 |
+
|
73 |
+
if "ferret" in self.preprocess_type:
|
74 |
+
self.image_processor = CLIPImageProcessor_Ferret.from_pretrained(self.vision_tower_name)
|
75 |
+
else:
|
76 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
|
77 |
+
|
78 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
|
79 |
+
self.vision_tower.requires_grad_(False)
|
80 |
+
|
81 |
+
self.is_loaded = True
|
82 |
+
|
83 |
+
def feature_select(self, image_forward_outs):
|
84 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
85 |
+
if self.select_feature == 'patch':
|
86 |
+
image_features = image_features[:, 1:]
|
87 |
+
elif self.select_feature == 'cls_patch':
|
88 |
+
image_features = image_features
|
89 |
+
else:
|
90 |
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
91 |
+
return image_features
|
92 |
+
|
93 |
+
# @torch.no_grad()
|
94 |
+
def forward(self, images):
|
95 |
+
if type(images) is list:
|
96 |
+
image_features = []
|
97 |
+
for image in images:
|
98 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
99 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
100 |
+
image_features.append(image_feature)
|
101 |
+
else:
|
102 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
103 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
104 |
+
|
105 |
+
return image_features
|
106 |
+
|
107 |
+
@property
|
108 |
+
def dummy_feature(self):
|
109 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
110 |
+
|
111 |
+
@property
|
112 |
+
def dtype(self):
|
113 |
+
return self.vision_tower.dtype
|
114 |
+
|
115 |
+
@property
|
116 |
+
def device(self):
|
117 |
+
return self.vision_tower.device
|
118 |
+
|
119 |
+
@property
|
120 |
+
def config(self):
|
121 |
+
if self.is_loaded:
|
122 |
+
return self.vision_tower.config
|
123 |
+
else:
|
124 |
+
return self.cfg_only
|
125 |
+
|
126 |
+
@property
|
127 |
+
def hidden_size(self):
|
128 |
+
return self.config.hidden_size
|
129 |
+
|
130 |
+
@property
|
131 |
+
def num_patches_per_side(self):
|
132 |
+
return self.config.image_size // self.config.patch_size
|
133 |
+
|
134 |
+
@property
|
135 |
+
def num_patches(self):
|
136 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
class CLIPVisionTowerS2(CLIPVisionTower):
|
141 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
142 |
+
super().__init__(vision_tower, args, delay_load)
|
143 |
+
|
144 |
+
self.s2_scales = getattr(args, 's2_scales', '336,672,1008')
|
145 |
+
self.s2_scales = list(map(int, self.s2_scales.split(',')))
|
146 |
+
self.s2_scales.sort()
|
147 |
+
self.s2_split_size = self.s2_scales[0]
|
148 |
+
self.s2_image_size = self.s2_scales[-1]
|
149 |
+
|
150 |
+
try:
|
151 |
+
from s2wrapper import forward as multiscale_forward
|
152 |
+
except ImportError:
|
153 |
+
raise ImportError('Package s2wrapper not found! Please install by running: \npip install git+https://github.com/bfshi/scaling_on_scales.git')
|
154 |
+
self.multiscale_forward = multiscale_forward
|
155 |
+
|
156 |
+
# change resize/crop size in preprocessing to the largest image size in s2_scale
|
157 |
+
if not delay_load or getattr(args, 'unfreeze_mm_vision_tower', False):
|
158 |
+
self.image_processor.size['shortest_edge'] = self.s2_image_size
|
159 |
+
self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size
|
160 |
+
|
161 |
+
def load_model(self, device_map=None):
|
162 |
+
if self.is_loaded:
|
163 |
+
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
|
164 |
+
return
|
165 |
+
|
166 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
|
167 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
|
168 |
+
self.vision_tower.requires_grad_(False)
|
169 |
+
|
170 |
+
self.image_processor.size['shortest_edge'] = self.s2_image_size
|
171 |
+
self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size
|
172 |
+
|
173 |
+
self.is_loaded = True
|
174 |
+
|
175 |
+
@torch.no_grad()
|
176 |
+
def forward_feature(self, images):
|
177 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
178 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
179 |
+
return image_features
|
180 |
+
|
181 |
+
@torch.no_grad()
|
182 |
+
def forward(self, images):
|
183 |
+
if type(images) is list:
|
184 |
+
image_features = []
|
185 |
+
for image in images:
|
186 |
+
image_feature = self.multiscale_forward(self.forward_feature, image.unsqueeze(0), img_sizes=self.s2_scales, max_split_size=self.s2_split_size)
|
187 |
+
image_features.append(image_feature)
|
188 |
+
else:
|
189 |
+
image_features = self.multiscale_forward(self.forward_feature, images, img_sizes=self.s2_scales, max_split_size=self.s2_split_size)
|
190 |
+
|
191 |
+
return image_features
|
192 |
+
|
193 |
+
@property
|
194 |
+
def hidden_size(self):
|
195 |
+
return self.config.hidden_size * len(self.s2_scales)
|