jadechoghari
commited on
Create modeling.py
Browse files- modeling.py +168 -0
modeling.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
try:
|
22 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
23 |
+
GemmaConfig, GemmaModel, GemmaForCausalLM
|
24 |
+
except:
|
25 |
+
print("New model not imported. Try to update Transformers to 4.38.0 or later.")
|
26 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
27 |
+
from transformers.generation.utils import GenerateOutput
|
28 |
+
from transformers.generation.utils import logging
|
29 |
+
|
30 |
+
from ..ferret_arch import FerretMetaModel, FerretMetaForCausalLM
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
class FerretGemmaConfig(GemmaConfig):
|
35 |
+
model_type = "ferret_gemma"
|
36 |
+
|
37 |
+
|
38 |
+
class FerretGemmaModel(FerretMetaModel, GemmaModel):
|
39 |
+
config_class = FerretGemmaConfig
|
40 |
+
|
41 |
+
def __init__(self, config: GemmaConfig):
|
42 |
+
super(FerretGemmaModel, self).__init__(config)
|
43 |
+
|
44 |
+
|
45 |
+
class FerretGemmaForCausalLM(GemmaForCausalLM, FerretMetaForCausalLM):
|
46 |
+
config_class = FerretGemmaConfig
|
47 |
+
|
48 |
+
def __init__(self, config):
|
49 |
+
super(GemmaForCausalLM, self).__init__(config)
|
50 |
+
self.model = FerretGemmaModel(config)
|
51 |
+
self.vocab_size = config.vocab_size
|
52 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
53 |
+
|
54 |
+
# Initialize weights and apply final processing
|
55 |
+
self.post_init()
|
56 |
+
|
57 |
+
def get_model(self):
|
58 |
+
return self.model
|
59 |
+
|
60 |
+
def forward(
|
61 |
+
self,
|
62 |
+
input_ids: torch.LongTensor = None,
|
63 |
+
attention_mask: Optional[torch.Tensor] = None,
|
64 |
+
position_ids: Optional[torch.LongTensor] = None,
|
65 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
66 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
67 |
+
labels: Optional[torch.LongTensor] = None,
|
68 |
+
use_cache: Optional[bool] = None,
|
69 |
+
cache_position: Optional[torch.LongTensor] = None,
|
70 |
+
output_attentions: Optional[bool] = None,
|
71 |
+
output_hidden_states: Optional[bool] = None,
|
72 |
+
images: Optional[torch.FloatTensor] = None,
|
73 |
+
image_sizes: Optional[List[List[int]]] = None,
|
74 |
+
region_masks: Optional[List[torch.Tensor]] = None,
|
75 |
+
return_dict: Optional[bool] = None,
|
76 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
77 |
+
|
78 |
+
if inputs_embeds is None:
|
79 |
+
(
|
80 |
+
input_ids,
|
81 |
+
position_ids,
|
82 |
+
attention_mask,
|
83 |
+
past_key_values,
|
84 |
+
inputs_embeds,
|
85 |
+
labels,
|
86 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
87 |
+
input_ids,
|
88 |
+
position_ids,
|
89 |
+
attention_mask,
|
90 |
+
past_key_values,
|
91 |
+
labels,
|
92 |
+
images,
|
93 |
+
image_sizes=image_sizes,
|
94 |
+
region_masks=region_masks,
|
95 |
+
)
|
96 |
+
|
97 |
+
forward_output = super().forward(
|
98 |
+
input_ids=input_ids,
|
99 |
+
attention_mask=attention_mask,
|
100 |
+
position_ids=position_ids,
|
101 |
+
past_key_values=past_key_values,
|
102 |
+
inputs_embeds=inputs_embeds,
|
103 |
+
labels=labels,
|
104 |
+
use_cache=use_cache,
|
105 |
+
cache_position=cache_position,
|
106 |
+
output_attentions=output_attentions,
|
107 |
+
output_hidden_states=output_hidden_states,
|
108 |
+
return_dict=return_dict
|
109 |
+
)
|
110 |
+
|
111 |
+
return forward_output
|
112 |
+
|
113 |
+
@torch.no_grad()
|
114 |
+
def generate(
|
115 |
+
self,
|
116 |
+
inputs: Optional[torch.Tensor] = None,
|
117 |
+
images: Optional[torch.Tensor] = None,
|
118 |
+
image_sizes: Optional[torch.Tensor] = None,
|
119 |
+
region_masks: Optional[List[torch.Tensor]] = None,
|
120 |
+
**kwargs,
|
121 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
122 |
+
position_ids = kwargs.pop("position_ids", None)
|
123 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
124 |
+
if "inputs_embeds" in kwargs:
|
125 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
126 |
+
|
127 |
+
if images is not None:
|
128 |
+
(
|
129 |
+
inputs,
|
130 |
+
position_ids,
|
131 |
+
attention_mask,
|
132 |
+
_,
|
133 |
+
inputs_embeds,
|
134 |
+
_
|
135 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
136 |
+
inputs,
|
137 |
+
position_ids,
|
138 |
+
attention_mask,
|
139 |
+
None,
|
140 |
+
None,
|
141 |
+
images,
|
142 |
+
image_sizes=image_sizes,
|
143 |
+
region_masks=region_masks,
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
147 |
+
|
148 |
+
return super().generate(
|
149 |
+
position_ids=position_ids,
|
150 |
+
attention_mask=attention_mask,
|
151 |
+
inputs_embeds=inputs_embeds,
|
152 |
+
**kwargs
|
153 |
+
)
|
154 |
+
|
155 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
156 |
+
images = kwargs.pop("images", None)
|
157 |
+
image_sizes = kwargs.pop("image_sizes", None)
|
158 |
+
inputs = super().prepare_inputs_for_generation(
|
159 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
160 |
+
)
|
161 |
+
if images is not None:
|
162 |
+
inputs['images'] = images
|
163 |
+
if image_sizes is not None:
|
164 |
+
inputs['image_sizes'] = image_sizes
|
165 |
+
return inputs
|
166 |
+
|
167 |
+
AutoConfig.register("ferret_gemma", FerretGemmaConfig)
|
168 |
+
AutoModelForCausalLM.register(FerretGemmaConfig, FerretGemmaForCausalLM)
|