jadechoghari
commited on
Create builder.py
Browse files- builder.py +170 -0
builder.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
2 |
+
# you may not use this file except in compliance with the License.
|
3 |
+
# You may obtain a copy of the License at
|
4 |
+
#
|
5 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6 |
+
#
|
7 |
+
# Unless required by applicable law or agreed to in writing, software
|
8 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
9 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
10 |
+
# See the License for the specific language governing permissions and
|
11 |
+
# limitations under the License.
|
12 |
+
|
13 |
+
|
14 |
+
import os
|
15 |
+
import shutil
|
16 |
+
import pdb
|
17 |
+
|
18 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
|
19 |
+
import torch
|
20 |
+
|
21 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
22 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
23 |
+
|
24 |
+
LOGDIR = "."
|
25 |
+
|
26 |
+
# Model Constants
|
27 |
+
IGNORE_INDEX = -100
|
28 |
+
IMAGE_TOKEN_INDEX = -200
|
29 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
30 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
31 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
32 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
33 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
34 |
+
|
35 |
+
# Added by Ferret
|
36 |
+
DEFAULT_REGION_FEA_TOKEN = "<region_fea>"
|
37 |
+
VOCAB_IMAGE_W = 1000
|
38 |
+
VOCAB_IMAGE_H = 1000
|
39 |
+
|
40 |
+
# GROUNDING PROMPTS
|
41 |
+
GROUNDING_TEMPLATES = [
|
42 |
+
'\nProvide the bounding boxes of the mentioned objects.',
|
43 |
+
'\nInclude the coordinates for each mentioned object.',
|
44 |
+
'\nLocate the objects with their coordinates.',
|
45 |
+
'\nAnswer in [x1, y1, x2, y2] format.',
|
46 |
+
'\nMention the objects and their locations using the format [x1, y1, x2, y2].',
|
47 |
+
'\nDraw boxes around the mentioned objects.',
|
48 |
+
'\nUse boxes to show where each thing is.',
|
49 |
+
'\nTell me where the objects are with coordinates.',
|
50 |
+
'\nList where each object is with boxes.',
|
51 |
+
'\nShow me the regions with boxes.'
|
52 |
+
]
|
53 |
+
DEFAULT_REGION_FEA_TOKEN = "<region_fea>"
|
54 |
+
|
55 |
+
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto"):
|
56 |
+
kwargs = {"device_map": device_map}
|
57 |
+
|
58 |
+
if load_8bit:
|
59 |
+
kwargs['load_in_8bit'] = True
|
60 |
+
elif load_4bit:
|
61 |
+
kwargs['load_in_4bit'] = True
|
62 |
+
kwargs['quantization_config'] = BitsAndBytesConfig(
|
63 |
+
load_in_4bit=True,
|
64 |
+
bnb_4bit_compute_dtype=torch.float16,
|
65 |
+
bnb_4bit_use_double_quant=True,
|
66 |
+
bnb_4bit_quant_type='nf4'
|
67 |
+
)
|
68 |
+
else:
|
69 |
+
kwargs['torch_dtype'] = torch.float16
|
70 |
+
|
71 |
+
if 'llava' in model_name.lower() or 'ferret' in model_name.lower():
|
72 |
+
# Load LLaVA/FERRET model
|
73 |
+
if 'lora' in model_name.lower() and model_base is not None:
|
74 |
+
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
76 |
+
print('Loading LLaVA/FERRET from base model...')
|
77 |
+
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
|
78 |
+
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
79 |
+
if model.lm_head.weight.shape[0] != token_num:
|
80 |
+
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
81 |
+
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
82 |
+
|
83 |
+
print('Loading additional LLaVA/FERRET weights...')
|
84 |
+
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
|
85 |
+
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
|
86 |
+
else:
|
87 |
+
# this is probably from HF Hub
|
88 |
+
from huggingface_hub import hf_hub_download
|
89 |
+
def load_from_hf(repo_id, filename, subfolder=None):
|
90 |
+
cache_file = hf_hub_download(
|
91 |
+
repo_id=repo_id,
|
92 |
+
filename=filename,
|
93 |
+
subfolder=subfolder)
|
94 |
+
return torch.load(cache_file, map_location='cpu')
|
95 |
+
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
|
96 |
+
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
|
97 |
+
if any(k.startswith('model.model.') for k in non_lora_trainables):
|
98 |
+
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
|
99 |
+
model.load_state_dict(non_lora_trainables, strict=False)
|
100 |
+
|
101 |
+
from peft import PeftModel
|
102 |
+
print('Loading LoRA weights...')
|
103 |
+
model = PeftModel.from_pretrained(model, model_path)
|
104 |
+
print('Merging LoRA weights...')
|
105 |
+
model = model.merge_and_unload()
|
106 |
+
print('Model is loaded...')
|
107 |
+
elif model_base is not None:
|
108 |
+
# this may be mm projector only
|
109 |
+
print('Loading LLaVA/FERRET from base model...')
|
110 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
111 |
+
cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
112 |
+
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
|
113 |
+
|
114 |
+
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
|
115 |
+
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
|
116 |
+
model.load_state_dict(mm_projector_weights, strict=False)
|
117 |
+
else:
|
118 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
119 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
120 |
+
else:
|
121 |
+
# Load language model
|
122 |
+
if model_base is not None:
|
123 |
+
# PEFT model
|
124 |
+
from peft import PeftModel
|
125 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
126 |
+
model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
|
127 |
+
print(f"Loading LoRA weights from {model_path}")
|
128 |
+
model = PeftModel.from_pretrained(model, model_path)
|
129 |
+
print(f"Merging weights")
|
130 |
+
model = model.merge_and_unload()
|
131 |
+
print('Convert to FP16...')
|
132 |
+
model.to(torch.float16)
|
133 |
+
else:
|
134 |
+
use_fast = False
|
135 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
136 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
137 |
+
|
138 |
+
image_processor = None
|
139 |
+
|
140 |
+
if 'llava' in model_name.lower() or 'ferret' in model_name.lower():
|
141 |
+
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
142 |
+
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
|
143 |
+
mm_im_region_fea_token = getattr(model.config, "im_region_fea_token", None)
|
144 |
+
if mm_use_im_patch_token:
|
145 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
146 |
+
if mm_im_region_fea_token is not None:
|
147 |
+
tokenizer.add_tokens([DEFAULT_REGION_FEA_TOKEN], special_tokens=True)
|
148 |
+
if mm_use_im_start_end:
|
149 |
+
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
150 |
+
model.resize_token_embeddings(len(tokenizer))
|
151 |
+
|
152 |
+
vision_tower = model.get_vision_tower()
|
153 |
+
vision_tower_path = os.path.join(model_path, 'vision_tower')
|
154 |
+
if not vision_tower.is_loaded or os.path.exists(vision_tower_path):
|
155 |
+
if os.path.exists(vision_tower_path):
|
156 |
+
print(f'Start Loading vision tower from {vision_tower_path}')
|
157 |
+
vision_tower.load_model(vision_tower_path=vision_tower_path)
|
158 |
+
print(f'Finish Loading vision tower from {vision_tower_path}')
|
159 |
+
else:
|
160 |
+
vision_tower.load_model()
|
161 |
+
|
162 |
+
vision_tower.to(device='cuda', dtype=torch.float16)
|
163 |
+
image_processor = vision_tower.image_processor
|
164 |
+
|
165 |
+
if hasattr(model.config, "max_sequence_length"):
|
166 |
+
context_len = model.config.max_sequence_length
|
167 |
+
else:
|
168 |
+
context_len = 2048
|
169 |
+
|
170 |
+
return tokenizer, model, image_processor, context_len
|