|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size_h, grid_size_w, cls_token=False): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
grid_h = np.arange(grid_size_h, dtype=np.float32) |
|
grid_w = np.arange(grid_size_w, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size_h, grid_size_w]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token: |
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
def get_nd_sincos_pos_embed(embed_dim,dims, cls_token=False): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
grid_1ds= [np.arange(d, dtype=np.float32)for d in dims] |
|
grid = np.meshgrid(*grid_1ds) |
|
grid = np.stack(grid, axis=0) |
|
grid = grid[:,None] |
|
embed_dims = np.array([embed_dim//(2*len(dims))*2] * len(dims)) |
|
embed_dims[-1] += embed_dim - sum(embed_dims) |
|
pos_embeds = [get_1d_sincos_pos_embed_from_grid(d, g) for d,g in zip(embed_dims,grid)] |
|
pos_embed = np.concatenate(pos_embeds, axis=1) |
|
pos_embed = pos_embed.reshape(embed_dim,*dims) |
|
assert not cls_token |
|
if cls_token: |
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float32) |
|
omega /= embed_dim / 2.0 |
|
omega = 1.0 / 10000**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum("m,d->md", pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def interpolate_pos_embed(model, checkpoint_model, new_size=(64, 128)): |
|
if "net.pos_embed" in checkpoint_model: |
|
pos_embed_checkpoint = checkpoint_model["net.pos_embed"] |
|
embedding_size = pos_embed_checkpoint.shape[-1] |
|
orig_num_patches = pos_embed_checkpoint.shape[-2] |
|
patch_size = model.patch_size |
|
w_h_ratio = 2 |
|
orig_h = int((orig_num_patches // w_h_ratio) ** 0.5) |
|
orig_w = w_h_ratio * orig_h |
|
orig_size = (orig_h, orig_w) |
|
new_size = (new_size[0] // patch_size, new_size[1] // patch_size) |
|
|
|
|
|
if orig_size[0] != new_size[0]: |
|
print("Interpolate PEs from %dx%d to %dx%d" % (orig_size[0], orig_size[1], new_size[0], new_size[1])) |
|
pos_tokens = pos_embed_checkpoint.reshape(-1, orig_size[0], orig_size[1], embedding_size).permute( |
|
0, 3, 1, 2 |
|
) |
|
new_pos_tokens = torch.nn.functional.interpolate( |
|
pos_tokens, size=(new_size[0], new_size[1]), mode="bicubic", align_corners=False |
|
) |
|
new_pos_tokens = new_pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) |
|
checkpoint_model["net.pos_embed"] = new_pos_tokens |
|
|
|
|
|
def interpolate_channel_embed(checkpoint_model, new_len): |
|
if "net.channel_embed" in checkpoint_model: |
|
channel_embed_checkpoint = checkpoint_model["net.channel_embed"] |
|
old_len = channel_embed_checkpoint.shape[1] |
|
if new_len <= old_len: |
|
checkpoint_model["net.channel_embed"] = channel_embed_checkpoint[:, :new_len] |
|
|