|
import os |
|
|
|
from os import path, makedirs, listdir |
|
import sys |
|
import numpy as np |
|
np.random.seed(1) |
|
import random |
|
random.seed(1) |
|
|
|
import torch |
|
from torch import nn |
|
from torch.backends import cudnn |
|
import torch.optim.lr_scheduler as lr_scheduler |
|
|
|
from torch.autograd import Variable |
|
|
|
import pandas as pd |
|
from tqdm import tqdm |
|
import timeit |
|
import cv2 |
|
|
|
from zoo.models import Dpn92_Unet_Double |
|
|
|
from utils import * |
|
|
|
cv2.setNumThreads(0) |
|
cv2.ocl.setUseOpenCL(False) |
|
|
|
test_dir = 'test/images' |
|
models_folder = 'weights' |
|
|
|
if __name__ == '__main__': |
|
t0 = timeit.default_timer() |
|
|
|
seed = int(sys.argv[1]) |
|
|
|
|
|
|
|
|
|
|
|
pred_folder = 'dpn92cls_cce_{}_tuned'.format(seed) |
|
makedirs(pred_folder, exist_ok=True) |
|
|
|
|
|
|
|
models = [] |
|
|
|
snap_to_load = 'dpn92_cls_cce_{}_tuned_best'.format(seed) |
|
|
|
model = Dpn92_Unet_Double().cuda() |
|
|
|
model = nn.DataParallel(model).cuda() |
|
|
|
print("=> loading checkpoint '{}'".format(snap_to_load)) |
|
checkpoint = torch.load(path.join(models_folder, snap_to_load), map_location='cpu') |
|
loaded_dict = checkpoint['state_dict'] |
|
sd = model.state_dict() |
|
for k in model.state_dict(): |
|
if k in loaded_dict and sd[k].size() == loaded_dict[k].size(): |
|
sd[k] = loaded_dict[k] |
|
loaded_dict = sd |
|
model.load_state_dict(loaded_dict) |
|
print("loaded checkpoint '{}' (epoch {}, best_score {})" |
|
.format(snap_to_load, checkpoint['epoch'], checkpoint['best_score'])) |
|
|
|
model.eval() |
|
models.append(model) |
|
|
|
with torch.no_grad(): |
|
for f in tqdm(sorted(listdir(test_dir))): |
|
if '_pre_' in f: |
|
fn = path.join(test_dir, f) |
|
|
|
img = cv2.imread(fn, cv2.IMREAD_COLOR) |
|
img2 = cv2.imread(fn.replace('_pre_', '_post_'), cv2.IMREAD_COLOR) |
|
|
|
img = np.concatenate([img, img2], axis=2) |
|
img = preprocess_inputs(img) |
|
|
|
inp = [] |
|
inp.append(img) |
|
inp.append(img[::-1, ...]) |
|
inp.append(img[:, ::-1, ...]) |
|
inp.append(img[::-1, ::-1, ...]) |
|
inp = np.asarray(inp, dtype='float') |
|
inp = torch.from_numpy(inp.transpose((0, 3, 1, 2))).float() |
|
inp = Variable(inp).cuda() |
|
|
|
pred = [] |
|
for model in models: |
|
msk = model(inp) |
|
msk = torch.softmax(msk[:, :, ...], dim=1) |
|
msk = msk.cpu().numpy() |
|
|
|
msk[:, 0, ...] = 1 - msk[:, 0, ...] |
|
|
|
pred.append(msk[0, ...]) |
|
pred.append(msk[1, :, ::-1, :]) |
|
pred.append(msk[2, :, :, ::-1]) |
|
pred.append(msk[3, :, ::-1, ::-1]) |
|
|
|
pred_full = np.asarray(pred).mean(axis=0) |
|
|
|
msk = pred_full * 255 |
|
msk = msk.astype('uint8').transpose(1, 2, 0) |
|
cv2.imwrite(path.join(pred_folder, '{0}.png'.format(f.replace('.png', '_part1.png'))), msk[..., :3], [cv2.IMWRITE_PNG_COMPRESSION, 9]) |
|
cv2.imwrite(path.join(pred_folder, '{0}.png'.format(f.replace('.png', '_part2.png'))), msk[..., 2:], [cv2.IMWRITE_PNG_COMPRESSION, 9]) |
|
|
|
elapsed = timeit.default_timer() - t0 |
|
print('Time: {:.3f} min'.format(elapsed / 60)) |