# GLiREL : Generalist and Lightweight model for Zero-Shot Relation Extraction GLiREL is a Relation Extraction model capable of classifying unseen relations given the entities within a text. This builds upon the excelent work done by Urchade Zaratiana, Nadi Tomeh, Pierre Holat, Thierry Charnois on the [GLiNER](https://github.com/urchade/GLiNER) library which enables efficient zero-shot Named Entity Recognition. * GLiNER paper: [GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer](https://arxiv.org/abs/2311.08526) * Train a Zero-shot model: Open In Colab --- # Installation ```bash pip install glirel ``` ## Usage Once you've downloaded the GLiREL library, you can import the `GLiREL` class. You can then load this model using `GLiREL.from_pretrained` and predict entities with `predict_relations`. ```python from glirel import GLiREL import spacy model = GLiREL.from_pretrained("jackboyla/glirel_beta") nlp = spacy.load('en_core_web_sm') text = 'Derren Nesbitt had a history of being cast in "Doctor Who", having played villainous warlord Tegana in the 1964 First Doctor serial "Marco Polo".' doc = nlp(text) tokens = [token.text for token in doc] labels = ['country of origin', 'licensed to broadcast to', 'father', 'followed by', 'characters'] ner = [[26, 27, 'PERSON', 'Marco Polo'], [22, 23, 'Q2989412', 'First Doctor']] # 'type' is not used -- it can be any string! relations = model.predict_relations(tokens, labels, threshold=0.0, ner=ner, top_k=1) print('Number of relations:', len(relations)) sorted_data_desc = sorted(relations, key=lambda x: x['score'], reverse=True) print("\nDescending Order by Score:") for item in sorted_data_desc: print(f"{item['head_text']} --> {item['label']} --> {item['tail_text']} | score: {item['score']}") ``` ### Expected Output ``` Number of relations: 2 Descending Order by Score: {'head_pos': [26, 28], 'tail_pos': [22, 24], 'head_text': ['Marco', 'Polo'], 'tail_text': ['First', 'Doctor'], 'label': 'characters', 'score': 0.9923334121704102} {'head_pos': [22, 24], 'tail_pos': [26, 28], 'head_text': ['First', 'Doctor'], 'tail_text': ['Marco', 'Polo'], 'label': 'characters', 'score': 0.9915636777877808} ``` ## Constrain labels In practice, we usually want to define the types of entities that can exist as a head and/or tail of a relationship. This is already implemented in GLiREL: ```python labels = {"glirel_labels": { 'co-founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]}, 'no relation': {}, # head and tail can be any entity type 'country of origin': {"allowed_head": ["PERSON", "ORG"], "allowed_tail": ["LOC", "GPE"]}, 'parent': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]}, 'located in or next to body of water': {"allowed_head": ["LOC", "GPE", "FAC"], "allowed_tail": ["LOC", "GPE"]}, 'spouse': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]}, 'child': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]}, 'founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]}, 'founded on date': {"allowed_head": ["ORG"], "allowed_tail": ["DATE"]}, 'headquartered in': {"allowed_head": ["ORG"], "allowed_tail": ["LOC", "GPE", "FAC"]}, 'acquired by': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]}, 'subsidiary of': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]}, } } ``` ## Usage with spaCy You can also load GliREL into a regular spaCy NLP pipeline. Here's an example using an English pipeline. ```python import spacy import glirel # Load a blank spaCy model or an existing one nlp = spacy.load('en_core_web_sm') # Add the GLiREL component to the pipeline nlp.add_pipe("glirel", after="ner") # Now you can use the pipeline with the GLiREL component text = "Apple Inc. was founded by Steve Jobs, Steve Wozniak, and Ronald Wayne in April 1976. The company is headquartered in Cupertino, California." labels = {"glirel_labels": { 'co-founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]}, 'country of origin': {"allowed_head": ["PERSON", "ORG"], "allowed_tail": ["LOC", "GPE"]}, 'licensed to broadcast to': {"allowed_head": ["ORG"]}, 'no relation': {}, 'parent': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]}, 'followed by': {"allowed_head": ["PERSON", "ORG"], "allowed_tail": ["PERSON", "ORG"]}, 'located in or next to body of water': {"allowed_head": ["LOC", "GPE", "FAC"], "allowed_tail": ["LOC", "GPE"]}, 'spouse': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]}, 'child': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]}, 'founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]}, 'headquartered in': {"allowed_head": ["ORG"], "allowed_tail": ["LOC", "GPE", "FAC"]}, 'acquired by': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]}, 'subsidiary of': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]}, } } # Add the labels to the pipeline at inference time docs = list( nlp.pipe([(text, labels)], as_tuples=True) ) relations = docs[0][0]._.relations print('Number of relations:', len(relations)) sorted_data_desc = sorted(relations, key=lambda x: x['score'], reverse=True) print("\nDescending Order by Score:") for item in sorted_data_desc: print(f"{item['head_text']} --> {item['label']} --> {item['tail_text']} | score: {item['score']}") ``` ### Expected Output ``` Number of relations: 5 Descending Order by Score: ['Apple', 'Inc.'] --> headquartered in --> ['California'] | score: 0.9854260683059692 ['Apple', 'Inc.'] --> headquartered in --> ['Cupertino'] | score: 0.9569844603538513 ['Steve', 'Wozniak'] --> co-founder --> ['Apple', 'Inc.'] | score: 0.09025496244430542 ['Steve', 'Jobs'] --> co-founder --> ['Apple', 'Inc.'] | score: 0.08805803954601288 ['Ronald', 'Wayne'] --> co-founder --> ['Apple', 'Inc.'] | score: 0.07996643334627151 ``` ## To run experiments FewRel: ~56k examples WikiZSL: ~85k examples ```bash # few_rel cd data python process_few_rel.py cd .. # adjust config python train.py --config config_few_rel.yaml ``` ```bash # wiki_zsl cd data python process_wiki_zsl.py cd .. # python train.py --config config_wiki_zsl.yaml ``` ## Example training data NOTE that the entity indices are inclusive i.e `"Binsey"` is `[7, 7]`. This differs from spaCy where the end index is exclusive (in this case spaCy would set the indices to `[7, 8]`) JSONL file: ```json { "ner": [ [7, 7, "Q4914513", "Binsey"], [11, 12, "Q19686", "River Thames"] ], "relations": [ { "head": {"mention": "Binsey", "position": [7, 7], "type": "LOC"}, # 'type' is not used -- it can be any string! "tail": {"mention": "River Thames", "position": [11, 12], "type": "Q19686"}, "relation_text": "located in or next to body of water" } ], "tokenized_text": ["The", "race", "took", "place", "between", "Godstow", "and", "Binsey", "along", "the", "Upper", "River", "Thames", "."] }, { "ner": [ [9, 10, "Q4386693", "Legislative Assembly"], [1, 3, "Q1848835", "Parliament of Victoria"] ], "relations": [ { "head": {"mention": "Legislative Assembly", "position": [9, 10], "type": "Q4386693"}, "tail": {"mention": "Parliament of Victoria", "position": [1, 3], "type": "Q1848835"}, "relation_text": "part of" } ], "tokenized_text": ["The", "Parliament", "of", "Victoria", "consists", "of", "the", "lower", "house", "Legislative", "Assembly", ",", "the", "upper", "house", "Legislative", "Council", "and", "the", "Queen", "of", "Australia", "."] } ``` ## License [GLiREL](https://github.com/jackboyla/GLiREL) by [Jack Boylan](https://github.com/jackboyla) is licensed under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1). CC Logo BY Logo NC Logo SA Logo