End of training
Browse files
README.md
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
base_model: allegro/herbert-large-cased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- universal_dependencies
|
8 |
+
model-index:
|
9 |
+
- name: herbert-large-cased_deprel
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# herbert-large-cased_deprel
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [allegro/herbert-large-cased](https://huggingface.co/allegro/herbert-large-cased) on the universal_dependencies dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4494
|
21 |
+
- : {'precision': 0.9848484848484849, 'recall': 0.9154929577464789, 'f1': 0.948905109489051, 'number': 71}
|
22 |
+
- Arataxis:insert: {'precision': 0.6216216216216216, 'recall': 0.34328358208955223, 'f1': 0.4423076923076923, 'number': 67}
|
23 |
+
- Arataxis:obj: {'precision': 0.6428571428571429, 'recall': 0.46551724137931033, 'f1': 0.5399999999999999, 'number': 58}
|
24 |
+
- Ark: {'precision': 0.8614457831325302, 'recall': 0.7944444444444444, 'f1': 0.8265895953757226, 'number': 180}
|
25 |
+
- Ase: {'precision': 0.9363103953147877, 'recall': 0.900070372976777, 'f1': 0.9178327951202009, 'number': 1421}
|
26 |
+
- Bj: {'precision': 0.8612244897959184, 'recall': 0.8115384615384615, 'f1': 0.8356435643564357, 'number': 520}
|
27 |
+
- Bl: {'precision': 0.8, 'recall': 0.8054054054054054, 'f1': 0.8026936026936028, 'number': 740}
|
28 |
+
- Bl:agent: {'precision': 0.6875, 'recall': 0.6875, 'f1': 0.6875, 'number': 16}
|
29 |
+
- Bl:arg: {'precision': 0.7847222222222222, 'recall': 0.710691823899371, 'f1': 0.7458745874587458, 'number': 318}
|
30 |
+
- Bl:cmpr: {'precision': 0.8461538461538461, 'recall': 0.6470588235294118, 'f1': 0.7333333333333334, 'number': 17}
|
31 |
+
- C: {'precision': 0.8974358974358975, 'recall': 0.8115942028985508, 'f1': 0.8523592085235921, 'number': 345}
|
32 |
+
- C:preconj: {'precision': 1.0, 'recall': 0.3333333333333333, 'f1': 0.5, 'number': 6}
|
33 |
+
- Cl: {'precision': 0.8581081081081081, 'recall': 0.8141025641025641, 'f1': 0.8355263157894737, 'number': 156}
|
34 |
+
- Cl:relcl: {'precision': 0.7368421052631579, 'recall': 0.5526315789473685, 'f1': 0.631578947368421, 'number': 76}
|
35 |
+
- Comp: {'precision': 0.7606382978723404, 'recall': 0.7079207920792079, 'f1': 0.7333333333333332, 'number': 202}
|
36 |
+
- Comp:cleft: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
|
37 |
+
- Comp:obj: {'precision': 0.5, 'recall': 0.2916666666666667, 'f1': 0.3684210526315789, 'number': 24}
|
38 |
+
- Comp:pred: {'precision': 0.4375, 'recall': 0.7, 'f1': 0.5384615384615384, 'number': 10}
|
39 |
+
- Comp:subj: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
|
40 |
+
- Dvcl: {'precision': 0.7983193277310925, 'recall': 0.7480314960629921, 'f1': 0.7723577235772359, 'number': 127}
|
41 |
+
- Dvcl:cmpr: {'precision': 0.3333333333333333, 'recall': 0.25, 'f1': 0.28571428571428575, 'number': 4}
|
42 |
+
- Dvmod: {'precision': 0.8131868131868132, 'recall': 0.7789473684210526, 'f1': 0.7956989247311829, 'number': 380}
|
43 |
+
- Dvmod:arg: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
|
44 |
+
- Dvmod:emph: {'precision': 0.7755102040816326, 'recall': 0.7354838709677419, 'f1': 0.7549668874172186, 'number': 155}
|
45 |
+
- Dvmod:neg: {'precision': 0.9067796610169492, 'recall': 0.8492063492063492, 'f1': 0.8770491803278689, 'number': 126}
|
46 |
+
- Et: {'precision': 0.9072164948453608, 'recall': 0.7927927927927928, 'f1': 0.8461538461538461, 'number': 111}
|
47 |
+
- Et:numgov: {'precision': 0.8421052631578947, 'recall': 0.8, 'f1': 0.8205128205128205, 'number': 20}
|
48 |
+
- Et:nummod: {'precision': 0.5, 'recall': 1.0, 'f1': 0.6666666666666666, 'number': 1}
|
49 |
+
- Et:poss: {'precision': 0.8928571428571429, 'recall': 0.8620689655172413, 'f1': 0.8771929824561403, 'number': 58}
|
50 |
+
- Iscourse:intj: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2}
|
51 |
+
- Ist: {'precision': 1.0, 'recall': 0.6666666666666666, 'f1': 0.8, 'number': 9}
|
52 |
+
- Ixed: {'precision': 0.6833333333333333, 'recall': 0.47674418604651164, 'f1': 0.5616438356164384, 'number': 86}
|
53 |
+
- Lat: {'precision': 0.6724137931034483, 'recall': 0.5416666666666666, 'f1': 0.6, 'number': 72}
|
54 |
+
- Mod: {'precision': 0.7808471454880295, 'recall': 0.7138047138047138, 'f1': 0.7458223394898855, 'number': 1188}
|
55 |
+
- Mod:arg: {'precision': 0.5681818181818182, 'recall': 0.4878048780487805, 'f1': 0.5249343832020996, 'number': 205}
|
56 |
+
- Mod:flat: {'precision': 0.5609756097560976, 'recall': 0.3898305084745763, 'f1': 0.46, 'number': 59}
|
57 |
+
- Mod:poss: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 4}
|
58 |
+
- Mod:pred: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
|
59 |
+
- Obj: {'precision': 0.7905759162303665, 'recall': 0.6832579185520362, 'f1': 0.733009708737864, 'number': 221}
|
60 |
+
- Ocative: {'precision': 0.75, 'recall': 0.9, 'f1': 0.8181818181818182, 'number': 10}
|
61 |
+
- Onj: {'precision': 0.7920792079207921, 'recall': 0.6517311608961304, 'f1': 0.7150837988826816, 'number': 491}
|
62 |
+
- Oot: {'precision': 0.955, 'recall': 0.955, 'f1': 0.955, 'number': 1000}
|
63 |
+
- Op: {'precision': 0.7974683544303798, 'recall': 0.7682926829268293, 'f1': 0.782608695652174, 'number': 82}
|
64 |
+
- Ppos: {'precision': 0.7272727272727273, 'recall': 0.5423728813559322, 'f1': 0.6213592233009708, 'number': 59}
|
65 |
+
- Rphan: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
|
66 |
+
- Subj: {'precision': 0.9121287128712872, 'recall': 0.8826347305389222, 'f1': 0.8971393791844188, 'number': 835}
|
67 |
+
- Subj:pass: {'precision': 0.7727272727272727, 'recall': 0.5862068965517241, 'f1': 0.6666666666666667, 'number': 29}
|
68 |
+
- Ummod: {'precision': 0.8769230769230769, 'recall': 0.890625, 'f1': 0.883720930232558, 'number': 64}
|
69 |
+
- Ummod:gov: {'precision': 0.7346938775510204, 'recall': 0.72, 'f1': 0.7272727272727272, 'number': 50}
|
70 |
+
- Unct: {'precision': 0.9216317767042405, 'recall': 0.8516865079365079, 'f1': 0.8852797112657901, 'number': 2016}
|
71 |
+
- Ux: {'precision': 0.9166666666666666, 'recall': 0.6111111111111112, 'f1': 0.7333333333333334, 'number': 36}
|
72 |
+
- Ux:clitic: {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 60}
|
73 |
+
- Ux:cnd: {'precision': 0.8, 'recall': 0.7272727272727273, 'f1': 0.761904761904762, 'number': 22}
|
74 |
+
- Ux:imp: {'precision': 1.0, 'recall': 0.75, 'f1': 0.8571428571428571, 'number': 4}
|
75 |
+
- Ux:pass: {'precision': 0.7297297297297297, 'recall': 0.6923076923076923, 'f1': 0.7105263157894737, 'number': 39}
|
76 |
+
- Xpl:pv: {'precision': 0.8973214285714286, 'recall': 0.8410041841004184, 'f1': 0.8682505399568035, 'number': 239}
|
77 |
+
- Overall Precision: 0.8599
|
78 |
+
- Overall Recall: 0.7975
|
79 |
+
- Overall F1: 0.8275
|
80 |
+
- Overall Accuracy: 0.8468
|
81 |
+
|
82 |
+
## Model description
|
83 |
+
|
84 |
+
More information needed
|
85 |
+
|
86 |
+
## Intended uses & limitations
|
87 |
+
|
88 |
+
More information needed
|
89 |
+
|
90 |
+
## Training and evaluation data
|
91 |
+
|
92 |
+
More information needed
|
93 |
+
|
94 |
+
## Training procedure
|
95 |
+
|
96 |
+
### Training hyperparameters
|
97 |
+
|
98 |
+
The following hyperparameters were used during training:
|
99 |
+
- learning_rate: 5e-05
|
100 |
+
- train_batch_size: 16
|
101 |
+
- eval_batch_size: 8
|
102 |
+
- seed: 42
|
103 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
104 |
+
- lr_scheduler_type: linear
|
105 |
+
- num_epochs: 10
|
106 |
+
|
107 |
+
### Training results
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
### Framework versions
|
112 |
+
|
113 |
+
- Transformers 4.42.4
|
114 |
+
- Pytorch 2.3.1+cu121
|
115 |
+
- Datasets 2.20.0
|
116 |
+
- Tokenizers 0.19.1
|