--- library_name: peft license: llama3.1 base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: d7dacba5-abc9-44d3-92a0-9deec81dc181 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6d961e5ee0b627ef_train_data.json ds_type: json format: custom path: /workspace/input_data/6d961e5ee0b627ef_train_data.json type: field_instruction: text field_output: all_events format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: max_steps: 50 weight_decay: 0.01 gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: ivangrapher/d7dacba5-abc9-44d3-92a0-9deec81dc181 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 25 micro_batch_size: 2 mlflow_experiment_name: /tmp/6d961e5ee0b627ef_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 70 sequence_len: 2048 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d7dacba5-abc9-44d3-92a0-9deec81dc181 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d7dacba5-abc9-44d3-92a0-9deec81dc181 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# d7dacba5-abc9-44d3-92a0-9deec81dc181 This model is a fine-tuned version of [VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct](https://huggingface.co./VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0043 | 1 | 9.8786 | | 9.1996 | 0.0128 | 3 | 9.8052 | | 9.7841 | 0.0256 | 6 | 8.2528 | | 5.9899 | 0.0384 | 9 | 3.2230 | | 1.8292 | 0.0512 | 12 | 0.8131 | | 0.7333 | 0.064 | 15 | 0.6106 | | 0.5552 | 0.0768 | 18 | 0.5230 | | 0.4576 | 0.0896 | 21 | 0.5373 | | 0.6688 | 0.1024 | 24 | 0.5149 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1