---
tags:
- Instance Segmentation
- Vision Transformers
- CNN
- Optical Space Missions
- Artefact Mapping
- ESA
pretty_name: XAMI-model
license: mit
datasets:
- iulia-elisa/XAMI-dataset
---
XAMI-model: XMM-Newton optical Artefact Mapping for astronomical Instance segmentation
🚀 Check the **[XAMI model](https://github.com/ESA-Datalabs/XAMI-model)** on Github.
## 💫 Introduction
The code uses images from the XAMI dataset (available on [Github](https://github.com/ESA-Datalabs/XAMI-dataset) and [HuggingFace🤗](https://huggingface.co./datasets/iulia-elisa/XAMI-dataset)). The images represent observations from the XMM-Newton's Opical Monitor (XMM-OM). Information about the XMM-OM can be found here:
- XMM-OM User's Handbook: https://www.mssl.ucl.ac.uk/www_xmm/ukos/onlines/uhb/XMM_UHB/node1.html.
- Technical details: https://www.cosmos.esa.int/web/xmm-newton/technical-details-om.
- The article https://ui.adsabs.harvard.edu/abs/2001A%26A...365L..36M/abstract.
## 📂 Cloning the repository
```bash
git clone https://github.com/ESA-Datalabs/XAMI-model.git
cd XAMI-model
# creating the environment
conda env create -f environment.yaml
conda activate xami_model_env
```
## 📊 Downloading the dataset and model checkpoints from HuggingFace🤗
Check [dataset_and_model.ipynb](https://github.com/ESA-Datalabs/XAMI-model/blob/main/dataset_and_model.ipynb) for downloading the dataset and model weights.
The dataset is splited into train and validation categories and contains annotated artefacts in COCO format for Instance Segmentation. We use multilabel Stratified K-fold (k=4) to balance class distributions across splits. We choose to work with a single dataset splits version (out of 4) but also provide means to work with all 4 versions.
To better understand our dataset structure, please check the [Dataset-Structure.md](https://github.com/ESA-Datalabs/XAMI-dataset/blob/main/Datasets-Structure.md) for more details. We provide the following dataset formats: COCO format for Instance Segmentation (commonly used by [Detectron2](https://github.com/facebookresearch/detectron2) models) and YOLOv8-Seg format used by [ultralytics](https://github.com/ultralytics/ultralytics).
## 💡 Model Inference
After cloning the repository and setting up the environment, use the following Python code for model loading and inference:
```python
import sys
from inference.xami_inference import Xami
detr_checkpoint = './train/weights/yolo_weights/yolov8_detect_300e_best.pt'
sam_checkpoint = './train/weights/sam_weights/sam_0_best.pth'
# the SAM checkpoint and model_type (vit_h, vit_t, etc.) must be compatible
detr_sam_pipeline = Xami(
device='cuda:0',
detr_checkpoint=detr_checkpoint, #YOLO(detr_checkpoint)
sam_checkpoint=sam_checkpoint,
model_type='vit_t',
use_detr_masks=True)
# prediction example
masks = yolo_sam_pipeline.run_predict(
'./example_images/S0743200101_V.jpg',
yolo_conf=0.2,
show_masks=True)
```
## 🚀 Training the model
Check the training [README.md](https://github.com/ESA-Datalabs/XAMI-model/blob/main/train/README.md).
## © Licence
This project is licensed under [MIT license](LICENSE).