--- license: apache-2.0 base_model: dima806/deepfake_vs_real_image_detection tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: realFake-food results: - task: name: Image Classification type: image-classification dataset: name: ai_real_images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8013698630136986 --- # realFake-food This model is a fine-tuned version of [dima806/deepfake_vs_real_image_detection](https://huggingface.co./dima806/deepfake_vs_real_image_detection) on the ai_real_images dataset. It achieves the following results on the evaluation set: - Loss: 0.4344 - Accuracy: 0.8014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3941 | 1.9231 | 100 | 0.4344 | 0.8014 | | 0.2366 | 3.8462 | 200 | 0.4853 | 0.8630 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1