--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-fake-food results: [] --- # finetuned-fake-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1451 - Accuracy: 0.9628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3831 | 0.1010 | 100 | 0.2663 | 0.8912 | | 0.3699 | 0.2020 | 200 | 0.2570 | 0.8990 | | 0.2135 | 0.3030 | 300 | 0.6753 | 0.7837 | | 0.214 | 0.4040 | 400 | 0.2690 | 0.8901 | | 0.1947 | 0.5051 | 500 | 0.2533 | 0.9112 | | 0.3618 | 0.6061 | 600 | 0.3738 | 0.8571 | | 0.2065 | 0.7071 | 700 | 0.2919 | 0.8919 | | 0.3103 | 0.8081 | 800 | 0.2165 | 0.9169 | | 0.1479 | 0.9091 | 900 | 0.2135 | 0.9173 | | 0.2421 | 1.0101 | 1000 | 0.2187 | 0.9184 | | 0.2264 | 1.1111 | 1100 | 0.1888 | 0.9205 | | 0.1664 | 1.2121 | 1200 | 0.2607 | 0.8876 | | 0.2049 | 1.3131 | 1300 | 0.2502 | 0.9005 | | 0.1503 | 1.4141 | 1400 | 0.2305 | 0.9177 | | 0.1846 | 1.5152 | 1500 | 0.1881 | 0.9219 | | 0.1571 | 1.6162 | 1600 | 0.1788 | 0.9284 | | 0.4091 | 1.7172 | 1700 | 0.2228 | 0.9216 | | 0.2954 | 1.8182 | 1800 | 0.1653 | 0.9366 | | 0.1366 | 1.9192 | 1900 | 0.1529 | 0.9420 | | 0.1657 | 2.0202 | 2000 | 0.1745 | 0.9255 | | 0.2531 | 2.1212 | 2100 | 0.1744 | 0.9381 | | 0.152 | 2.2222 | 2200 | 0.2513 | 0.8951 | | 0.145 | 2.3232 | 2300 | 0.1718 | 0.9302 | | 0.202 | 2.4242 | 2400 | 0.2436 | 0.9033 | | 0.1346 | 2.5253 | 2500 | 0.1839 | 0.9234 | | 0.1554 | 2.6263 | 2600 | 0.1447 | 0.9463 | | 0.183 | 2.7273 | 2700 | 0.2474 | 0.8822 | | 0.0972 | 2.8283 | 2800 | 0.2223 | 0.9205 | | 0.1073 | 2.9293 | 2900 | 0.1860 | 0.9345 | | 0.1824 | 3.0303 | 3000 | 0.2324 | 0.9194 | | 0.1221 | 3.1313 | 3100 | 0.1475 | 0.9449 | | 0.1039 | 3.2323 | 3200 | 0.1480 | 0.9427 | | 0.276 | 3.3333 | 3300 | 0.1591 | 0.9402 | | 0.2498 | 3.4343 | 3400 | 0.2447 | 0.9098 | | 0.1453 | 3.5354 | 3500 | 0.1556 | 0.9416 | | 0.1794 | 3.6364 | 3600 | 0.2272 | 0.9083 | | 0.1467 | 3.7374 | 3700 | 0.1673 | 0.9413 | | 0.1372 | 3.8384 | 3800 | 0.1763 | 0.9341 | | 0.2283 | 3.9394 | 3900 | 0.1671 | 0.9373 | | 0.164 | 4.0404 | 4000 | 0.1490 | 0.9477 | | 0.1513 | 4.1414 | 4100 | 0.1547 | 0.9488 | | 0.0991 | 4.2424 | 4200 | 0.1536 | 0.9431 | | 0.1419 | 4.3434 | 4300 | 0.1568 | 0.9445 | | 0.1452 | 4.4444 | 4400 | 0.2328 | 0.9320 | | 0.1445 | 4.5455 | 4500 | 0.1351 | 0.9513 | | 0.1366 | 4.6465 | 4600 | 0.1571 | 0.9416 | | 0.097 | 4.7475 | 4700 | 0.1506 | 0.9424 | | 0.0603 | 4.8485 | 4800 | 0.1435 | 0.9499 | | 0.1179 | 4.9495 | 4900 | 0.1754 | 0.9363 | | 0.1948 | 5.0505 | 5000 | 0.1609 | 0.9402 | | 0.1021 | 5.1515 | 5100 | 0.1566 | 0.9459 | | 0.0652 | 5.2525 | 5200 | 0.1564 | 0.9481 | | 0.1029 | 5.3535 | 5300 | 0.1410 | 0.9492 | | 0.1014 | 5.4545 | 5400 | 0.1490 | 0.9531 | | 0.1338 | 5.5556 | 5500 | 0.1865 | 0.9406 | | 0.0844 | 5.6566 | 5600 | 0.1631 | 0.9456 | | 0.1059 | 5.7576 | 5700 | 0.1738 | 0.9409 | | 0.0788 | 5.8586 | 5800 | 0.1801 | 0.9370 | | 0.0941 | 5.9596 | 5900 | 0.1575 | 0.9495 | | 0.112 | 6.0606 | 6000 | 0.1796 | 0.9470 | | 0.0691 | 6.1616 | 6100 | 0.1697 | 0.9499 | | 0.1385 | 6.2626 | 6200 | 0.1348 | 0.9563 | | 0.1173 | 6.3636 | 6300 | 0.1522 | 0.9502 | | 0.046 | 6.4646 | 6400 | 0.2114 | 0.9391 | | 0.0319 | 6.5657 | 6500 | 0.1723 | 0.9477 | | 0.0757 | 6.6667 | 6600 | 0.1561 | 0.9527 | | 0.0744 | 6.7677 | 6700 | 0.1587 | 0.9567 | | 0.0341 | 6.8687 | 6800 | 0.1458 | 0.9578 | | 0.1512 | 6.9697 | 6900 | 0.1572 | 0.9531 | | 0.0153 | 7.0707 | 7000 | 0.1402 | 0.9617 | | 0.0711 | 7.1717 | 7100 | 0.1527 | 0.9610 | | 0.0453 | 7.2727 | 7200 | 0.1512 | 0.9570 | | 0.0052 | 7.3737 | 7300 | 0.1936 | 0.9520 | | 0.0477 | 7.4747 | 7400 | 0.1699 | 0.9513 | | 0.091 | 7.5758 | 7500 | 0.1628 | 0.9513 | | 0.063 | 7.6768 | 7600 | 0.1474 | 0.9578 | | 0.0497 | 7.7778 | 7700 | 0.1389 | 0.9613 | | 0.0552 | 7.8788 | 7800 | 0.2587 | 0.9381 | | 0.0364 | 7.9798 | 7900 | 0.1361 | 0.9603 | | 0.0124 | 8.0808 | 8000 | 0.1438 | 0.9606 | | 0.0703 | 8.1818 | 8100 | 0.1577 | 0.9585 | | 0.025 | 8.2828 | 8200 | 0.1943 | 0.9484 | | 0.0259 | 8.3838 | 8300 | 0.1590 | 0.9613 | | 0.0049 | 8.4848 | 8400 | 0.1521 | 0.9581 | | 0.0174 | 8.5859 | 8500 | 0.1522 | 0.9599 | | 0.0194 | 8.6869 | 8600 | 0.1456 | 0.9606 | | 0.0315 | 8.7879 | 8700 | 0.1411 | 0.9599 | | 0.0419 | 8.8889 | 8800 | 0.1426 | 0.9592 | | 0.0193 | 8.9899 | 8900 | 0.1375 | 0.9642 | | 0.0027 | 9.0909 | 9000 | 0.1379 | 0.9635 | | 0.0345 | 9.1919 | 9100 | 0.1444 | 0.9631 | | 0.0291 | 9.2929 | 9200 | 0.1492 | 0.9624 | | 0.017 | 9.3939 | 9300 | 0.1466 | 0.9635 | | 0.0269 | 9.4949 | 9400 | 0.1523 | 0.9631 | | 0.003 | 9.5960 | 9500 | 0.1445 | 0.9628 | | 0.0471 | 9.6970 | 9600 | 0.1454 | 0.9617 | | 0.0356 | 9.7980 | 9700 | 0.1452 | 0.9620 | | 0.0034 | 9.8990 | 9800 | 0.1445 | 0.9624 | | 0.0162 | 10.0 | 9900 | 0.1451 | 0.9628 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1