--- license: other tags: - axolotl - generated_from_trainer - Mistral - instruct - finetune - chatml - gpt4 - synthetic data - science - physics - chemistry - biology - math - llama-cpp - gguf-my-repo base_model: Weyaxi/Einstein-v5-v0.2-7B datasets: - allenai/ai2_arc - camel-ai/physics - camel-ai/chemistry - camel-ai/biology - camel-ai/math - metaeval/reclor - openbookqa - mandyyyyii/scibench - derek-thomas/ScienceQA - TIGER-Lab/ScienceEval - jondurbin/airoboros-3.2 - LDJnr/Capybara - Cot-Alpaca-GPT4-From-OpenHermes-2.5 - STEM-AI-mtl/Electrical-engineering - knowrohit07/saraswati-stem - sablo/oasst2_curated - lmsys/lmsys-chat-1m - TIGER-Lab/MathInstruct - bigbio/med_qa - meta-math/MetaMathQA-40K - openbookqa - piqa - metaeval/reclor - derek-thomas/ScienceQA - scibench - sciq - Open-Orca/SlimOrca - migtissera/Synthia-v1.3 - TIGER-Lab/ScienceEval - allenai/WildChat - microsoft/orca-math-word-problems-200k - openchat/openchat_sharegpt4_dataset - teknium/GPTeacher-General-Instruct - m-a-p/CodeFeedback-Filtered-Instruction model-index: - name: Einstein-v5-v0.2-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 60.92 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v5-v0.2-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 80.99 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v5-v0.2-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.02 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v5-v0.2-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 52.59 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v5-v0.2-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.69 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v5-v0.2-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 59.67 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v5-v0.2-7B name: Open LLM Leaderboard --- # AIronMind/Einstein-v5-v0.2-7B-Q4_K_M-GGUF This model was converted to GGUF format from [`Weyaxi/Einstein-v5-v0.2-7B`](https://huggingface.co./Weyaxi/Einstein-v5-v0.2-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co./Weyaxi/Einstein-v5-v0.2-7B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo AIronMind/Einstein-v5-v0.2-7B-Q4_K_M-GGUF --hf-file einstein-v5-v0.2-7b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo AIronMind/Einstein-v5-v0.2-7B-Q4_K_M-GGUF --hf-file einstein-v5-v0.2-7b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo AIronMind/Einstein-v5-v0.2-7B-Q4_K_M-GGUF --hf-file einstein-v5-v0.2-7b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo AIronMind/Einstein-v5-v0.2-7B-Q4_K_M-GGUF --hf-file einstein-v5-v0.2-7b-q4_k_m.gguf -c 2048 ```