File size: 3,104 Bytes
1f02860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a2bca
1f02860
 
 
 
51a2bca
1f02860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a2bca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f02860
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
base_model: vilsonrodrigues/falcon-7b-instruct-sharded
library_name: peft
license: apache-2.0
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: falcon7binstruct_fine_tunning_PPF_english_conversations_2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/rafael-torrestimal-Personal/huggingface/runs/44visaov)
# falcon7binstruct_fine_tunning_PPF_english_conversations_2

This model is a fine-tuned version of [vilsonrodrigues/falcon-7b-instruct-sharded](https://huggingface.co./vilsonrodrigues/falcon-7b-instruct-sharded) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3807

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 250
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4574        | 0.1325 | 10   | 0.8588          |
| 0.7214        | 0.2649 | 20   | 0.6192          |
| 0.6047        | 0.3974 | 30   | 0.5418          |
| 0.5232        | 0.5298 | 40   | 0.4877          |
| 0.4663        | 0.6623 | 50   | 0.4642          |
| 0.4592        | 0.7947 | 60   | 0.4437          |
| 0.4663        | 0.9272 | 70   | 0.4345          |
| 0.4386        | 1.0596 | 80   | 0.4169          |
| 0.34          | 1.1921 | 90   | 0.4198          |
| 0.3441        | 1.3245 | 100  | 0.4103          |
| 0.3459        | 1.4570 | 110  | 0.3999          |
| 0.3322        | 1.5894 | 120  | 0.3963          |
| 0.3287        | 1.7219 | 130  | 0.3871          |
| 0.3212        | 1.8543 | 140  | 0.3783          |
| 0.2906        | 1.9868 | 150  | 0.3788          |
| 0.2526        | 2.1192 | 160  | 0.3839          |
| 0.2417        | 2.2517 | 170  | 0.3903          |
| 0.2451        | 2.3841 | 180  | 0.3880          |
| 0.2492        | 2.5166 | 190  | 0.3896          |
| 0.2404        | 2.6490 | 200  | 0.3854          |
| 0.2348        | 2.7815 | 210  | 0.3822          |
| 0.2375        | 2.9139 | 220  | 0.3810          |
| 0.2264        | 3.0464 | 230  | 0.3806          |
| 0.2141        | 3.1788 | 240  | 0.3806          |
| 0.2069        | 3.3113 | 250  | 0.3807          |


### Framework versions

- PEFT 0.11.2.dev0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1