isshogirl commited on
Commit
6651d4d
1 Parent(s): 61d2cf7

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +235 -0
README.md ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: KT-AI/midm-bitext-S-7B-inst-v1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+ 이 모델은 NSMC(Naver Sentiment Movie Corpus) 데이터에 대한 KT-AI/midm-bitext-S-7B-inst-v1 모델의 미세 튜닝을 기반으로 합니다.
16
+
17
+ **목표**
18
+ - 영화 리뷰 텍스트를 프롬프트에 포함하여 모델에 입력하면 '긍정' 또는 '부정'이라고 예측하는 텍스트를 직접 생성하는 것입니다.
19
+
20
+ **요건**
21
+ - NSMC의 train 스플릿 앞쪽 2,000개 이상의 샘플을 학습에 사용했습니다.
22
+ - 테스트는 test 스플릿 앞쪽 1,000개의 샘플만을 사용하여 측정했습니다.
23
+ -
24
+
25
+ ## Accuracy : 90.60%
26
+ | | TP | TN |
27
+ |---------|------|--------|
28
+ | **PP** | 452 | 56.000 |
29
+ | **PN** | 38 | 454.000|
30
+ | **Accuracy** | - | 0.906 |
31
+
32
+
33
+ <!-- Provide a longer summary of what this model is. -->
34
+
35
+
36
+
37
+ - **Developed by:** [More Information Needed]
38
+ - **Funded by [optional]:** [More Information Needed]
39
+ - **Shared by [optional]:** [More Information Needed]
40
+ - **Model type:** [More Information Needed]
41
+ - **Language(s) (NLP):** [More Information Needed]
42
+ - **License:** [More Information Needed]
43
+ - **Finetuned from model [optional]:** [More Information Needed]
44
+
45
+ ### Model Sources [optional]
46
+
47
+ <!-- Provide the basic links for the model. -->
48
+
49
+ - **Repository:** [More Information Needed]
50
+ - **Paper [optional]:** [More Information Needed]
51
+ - **Demo [optional]:** [More Information Needed]
52
+
53
+ ## Uses
54
+
55
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
56
+
57
+ ### Direct Use
58
+
59
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Downstream Use [optional]
64
+
65
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Out-of-Scope Use
70
+
71
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
72
+
73
+ [More Information Needed]
74
+
75
+ ## Bias, Risks, and Limitations
76
+
77
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
78
+
79
+ [More Information Needed]
80
+
81
+ ### Recommendations
82
+
83
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
84
+
85
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
86
+
87
+ ## How to Get Started with the Model
88
+
89
+ Use the code below to get started with the model.
90
+
91
+ [More Information Needed]
92
+
93
+ ## Training Details
94
+
95
+ ### Training Data
96
+
97
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
98
+
99
+ [More Information Needed]
100
+
101
+ ### Training Procedure
102
+
103
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
104
+
105
+ #### Preprocessing [optional]
106
+
107
+ [More Information Needed]
108
+
109
+
110
+ #### Training Hyperparameters
111
+
112
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
113
+
114
+ #### Speeds, Sizes, Times [optional]
115
+
116
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
117
+
118
+ [More Information Needed]
119
+
120
+ ## Evaluation
121
+
122
+ <!-- This section describes the evaluation protocols and provides the results. -->
123
+
124
+ ### Testing Data, Factors & Metrics
125
+
126
+ #### Testing Data
127
+
128
+ <!-- This should link to a Dataset Card if possible. -->
129
+
130
+ [More Information Needed]
131
+
132
+ #### Factors
133
+
134
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
135
+
136
+ [More Information Needed]
137
+
138
+ #### Metrics
139
+
140
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
141
+
142
+ [More Information Needed]
143
+
144
+ ### Results
145
+
146
+ [More Information Needed]
147
+
148
+ #### Summary
149
+
150
+
151
+
152
+ ## Model Examination [optional]
153
+
154
+ <!-- Relevant interpretability work for the model goes here -->
155
+
156
+ [More Information Needed]
157
+
158
+ ## Environmental Impact
159
+
160
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
161
+
162
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
163
+
164
+ - **Hardware Type:** [More Information Needed]
165
+ - **Hours used:** [More Information Needed]
166
+ - **Cloud Provider:** [More Information Needed]
167
+ - **Compute Region:** [More Information Needed]
168
+ - **Carbon Emitted:** [More Information Needed]
169
+
170
+ ## Technical Specifications [optional]
171
+
172
+ ### Model Architecture and Objective
173
+
174
+ [More Information Needed]
175
+
176
+ ### Compute Infrastructure
177
+
178
+ [More Information Needed]
179
+
180
+ #### Hardware
181
+
182
+ [More Information Needed]
183
+
184
+ #### Software
185
+
186
+ [More Information Needed]
187
+
188
+ ## Citation [optional]
189
+
190
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
191
+
192
+ **BibTeX:**
193
+
194
+ [More Information Needed]
195
+
196
+ **APA:**
197
+
198
+ [More Information Needed]
199
+
200
+ ## Glossary [optional]
201
+
202
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
203
+
204
+ [More Information Needed]
205
+
206
+ ## More Information [optional]
207
+
208
+ [More Information Needed]
209
+
210
+ ## Model Card Authors [optional]
211
+
212
+ [More Information Needed]
213
+
214
+ ## Model Card Contact
215
+
216
+ [More Information Needed]
217
+
218
+
219
+ ## Training procedure
220
+
221
+ The following `bitsandbytes` quantization config was used during training:
222
+ - quant_method: bitsandbytes
223
+ - load_in_8bit: False
224
+ - load_in_4bit: True
225
+ - llm_int8_threshold: 6.0
226
+ - llm_int8_skip_modules: None
227
+ - llm_int8_enable_fp32_cpu_offload: False
228
+ - llm_int8_has_fp16_weight: False
229
+ - bnb_4bit_quant_type: nf4
230
+ - bnb_4bit_use_double_quant: False
231
+ - bnb_4bit_compute_dtype: bfloat16
232
+
233
+ ### Framework versions
234
+
235
+ - PEFT 0.7.0