--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: google-bert/bert-base-uncased metrics: - accuracy model-index: - name: gpt-neo-1.3B_peft_ft results: [] --- # gpt-neo-1.3B_peft_ft This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 7.5942 - Accuracy: 9630.1814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:| | No log | 1.0 | 1 | 9.3535 | 12436.1706 | | No log | 2.0 | 2 | 8.6990 | 13080.6173 | | No log | 3.0 | 3 | 8.1906 | 9042.9082 | | No log | 4.0 | 4 | 7.7776 | 9702.7354 | | No log | 5.0 | 5 | 7.5942 | 9630.1814 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1