training a model on local pc
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +110 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 301.16 +/- 11.98
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f13ffc65cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f13ffc65d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f13ffc65e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f13ffc65ea0>", "_build": "<function ActorCriticPolicy._build at 0x7f13ffc65f30>", "forward": "<function ActorCriticPolicy.forward at 0x7f13ffc65fc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f13ffc66050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f13ffc660e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f13ffc66170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f13ffc66200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f13ffc66290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f13ffc70240>"}, "verbose": false, "policy_kwargs": {"net_arch": [{"pi": [64, 64], "vf": [64, 64]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652013367.533207, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVzgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLQ0MEdABTAJROhZSMAmxylIWUjAF4lIWUjCIvdG1wL2lweWtlcm5lbF8yNTYxMi8zNzE0MzgxNTMyLnB5lIwIPGxhbWJkYT6USwdDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OTnSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoGX2UfZQoaBZoEIwMX19xdWFsbmFtZV9flGgQjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lGgLRz9QYk3S8an8c3WGlIZSMC4="}, "tensorboard_log": "logs/02_constant_lr/constant_lr_1e-03", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVzgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLQ0MEdABTAJROhZSMAmxylIWUjAF4lIWUjCIvdG1wL2lweWtlcm5lbF8yNTYxMi8zNzE0MzgxNTMyLnB5lIwIPGxhbWJkYT6USwdDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OTnSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoGX2UfZQoaBZoEIwMX19xdWFsbmFtZV9flGgQjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lGgLRz9QYk3S8an8c3WGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAPPrtr5BrEs/moYuvj+oK79vah+/7Qh/PQAAAAAAAAAAAHJDvcCnpT+Fyw+/rG49vwHnkDsKMga+AAAAAAAAAADtyFG+qBiEPgwQmT4T4iO/exT2vUuyaD4AAAAAAAAAALMpCL2Q1os+AJJAO7dKML/I6eS7Ov4huwAAAAAAAAAAM9lMPClwSbqKmiozUNntrx01szulW82zAACAPwAAgD8zxzI94WaKun+lLTi1HyszPc8HO1IGSrcAAIA/AACAPwBUQT2PFmm69EuLuROgiLQ5DAK68s6jOAAAgD8AAIA/mlQFvUJHkT+uci6+Sllov+Hi/7wiM469AAAAAAAAAACAeTo9w8FPupjsCLy07Eay20NwOlVoA7MAAIA/AACAPzNBgTxIW4a62so1tN7FnS684Ye6NvGLMwAAgD8AAIA/Q8WePva1Nz8GUYM8qbYtv5CI+z5aRIq9AAAAAAAAAACm1X6+vHEIPt6Uhz6mUR2/A8yLvovdaD4AAAAAAAAAACa7pz2VorQ/+nBRPjbu7r7VLpk8Oj/NPQAAAAAAAAAAzaAQPBREjboht7q9jsIYvbD55DthEAY+AACAPwAAAADmaE29aOPnPVc0Pz1KPg6/zNfqvIobCT0AAAAAAAAAAMZBFT67xbY9oiDKvrYRur6/sB47Q6xavgAAAAAAAAAAGvMqvfbMS7pc84u3gn0vsjKmyrryM542AACAPwAAgD+aLSa8sMW3P04IybxWHbu+Qp4gPHIL47wAAAAAAAAAABoAsz2Fgco8ric7vmo6o74Z6fc9oKNbvQAAAAAAAAAAwB2FPkuHkz5oPeq+qR8ev8CyOT7oaIC+AAAAAAAAAADtsjQ+SKUWP/pYjj2Mf1a/AzSlPkbleL0AAAAAAAAAAOZMdD09l2i7AC5ZvF+SkDxbC5m8tud3PQAAgD8AAIA/GkJdvSGsFj6x/7Q8MGITv5AqlL3RqLO8AAAAAAAAAABmvDi8UlDDuf1CzD3SfL62zq6/OqomvbUAAIA/AACAP01OJb0cPeE+jWaLvZ/wX78WIUS9yJhxvQAAAAAAAAAAAJkxPXssibpKsuE2xtHqMRtCATvKggS2AACAPwAAgD+ak2o8j44tujrqLbRNGIKww0N3ObY8nzMAAIA/AACAP1BLrD7IgZk/yCsbP7vtRr/BDiU/baQKPgAAAAAAAAAA88IsvmSxZj+FPpK+5eA6v0Opub4wEt69AAAAAAAAAADNOSk+BG7yPTw4CL8vFti+1SIBvnYerb4AAAAAAAAAABqcez32YAC6hJk/s88McK8lQx878Li+MwAAgD8AAIA/80WLPRTd6zvmEGO+//EBvTo6hDyA8k4/AAAAAAAAAADtWQa+xvg2PwAT/L37HGy/8B9NvocGgrwAAAAAAAAAAFPhDT7R9LI9ysHmvuQoqr53scW8tC6qvgAAAAAAAAAA8+yTvQoRS7vodBA9bvoBPKLOoTxb9Oy8AACAPwAAgD/mXNm9WIGMP/C2hb4xp1u/74n9vVcxIL4AAAAAAAAAADN36zzs2s+7qbECPFGmHTwunjS9CVoKPQAAgD8AAIA/GtyXvW4ixz6ygVu9ITVCvzcbjr2CAJ86AAAAAAAAAADz2se9bYIXP0bW+r1ENmO/YPM/vhqYQLwAAAAAAAAAAEA7Jr4JwKY/8u78vgsaDb9A3Fa+7pGavgAAAAAAAAAAZrODPZuzaj96Czs+nXCCvz4nCj4IEYg9AAAAAAAAAADNpYk8UgWcu01JT76pigw9kSvqPNBS6r0AAIA/AACAP0C/wL0rSb8/owa9vjSwL77wKE69Xjh5vQAAAAAAAAAAzWh0vSnPMrz++y8+C8gGPJFbo72m6d08AACAPwAAgD+wepY+LBr1PiqKiL6uQiu/YYC7PmIOZ74AAAAAAAAAAGZGRj33T/0+BfKKPdtyWL9yE5Y9XevRPAAAAAAAAAAAMyTVvcPtO7r+OTE+xNJsuSOao7s6Q3G4AACAPwAAAADArLM9SNOqukjUn72ZhT85hifOOhBQrLgAAIA/AACAP80omzykO+A+aRaxvHE/Tr+oQpc8vyctOgAAAAAAAAAAzSVhvXk3pT82/BK/oUAzv3mTHLvhwBq+AAAAAAAAAACad++8w9F4uuZ5XD2SoxkzJlGCuqVEJDMAAIA/AACAP7BLuz4kIWQ/BtaTPkvbJr9p3Ro/PFeZvAAAAAAAAAAA88gyPvv9sT5ecRu9ltU/v4n2tT707629AAAAAAAAAAAzKZG8e0yEukF3ibq/Z4I15M97u63cnDkAAIA/AACAP2YUFD3RLas/aITYPrqoAL+EMHA7job9PQAAAAAAAAAAs2mcvY+uE7qamEI0Wikgr1DRYjq9WJ+zAACAPwAAgD9mT4s9VEmuP3ZkNz860LK+uuhAvA72DD4AAAAAAAAAACABNr7rjpE+C+QuPlR0H79KWhi+Hp/zPQAAAAAAAAAAACIiPmhE2D1LqMi+t1H9vo5j7TpMcii+AAAAAAAAAACNIrM9y8KyP3Z55j5CVoa+0f2uPbaoXz4AAAAAAAAAAKYdkT2uK5S6wuZIM2e2cK97hOk69o/BswAAgD8AAIA/ZvfzvOxjgLtmVw0+RtfsvV5y/TxuEe2+AAAAAAAAgD8aymM9k6qaPsjB+L1yCzO/oE1hPbB4HL0AAAAAAAAAAKA4QL71x28+CHhqPvVIB7/bSTu+A4VbPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMQqCx3cdcUCUhpRSlIwBbJRLnIwBdJRHQK/KFsk6cRV1fZQoaAZoCWgPQwjCFVCoZ2VyQJSGlFKUaBVLvmgWR0CvyirpzLfUdX2UKGgGaAloD0MI1sdD391gcUCUhpRSlGgVS6VoFkdAr8n5t3wCsHV9lChoBmgJaA9DCGiULv0L83BAlIaUUpRoFUuXaBZHQK/KXC4SYgJ1fZQoaAZoCWgPQwgN/KiGfZhzQJSGlFKUaBVLpWgWR0CvynwCjk+5dX2UKGgGaAloD0MIRkHw+DbkcUCUhpRSlGgVS9BoFkdAr8qSCDmKZXV9lChoBmgJaA9DCKyMRj6vsm9AlIaUUpRoFUuuaBZHQK/KmMaS9uh1fZQoaAZoCWgPQwhNnrKarkVyQJSGlFKUaBVLvGgWR0CvyokPUaybdX2UKGgGaAloD0MIDaX2IpqvcUCUhpRSlGgVS7NoFkdAr8rRvaURnXV9lChoBmgJaA9DCPqa5bKRRnJAlIaUUpRoFUuaaBZHQK/KsgrYoRZ1fZQoaAZoCWgPQwgvTRHgdPRxQJSGlFKUaBVLlGgWR0CvysbvoePrdX2UKGgGaAloD0MIdy0hH/QacECUhpRSlGgVS6doFkdAr8rHGVAzHnV9lChoBmgJaA9DCGKCGr7FeHJAlIaUUpRoFUu+aBZHQK/LHUjs2Nx1fZQoaAZoCWgPQwgnT1lN1+BzQJSGlFKUaBVLwmgWR0CvyyokZ75VdX2UKGgGaAloD0MIB5rPuZv1c0CUhpRSlGgVS6FoFkdAr8sU34sVcnV9lChoBmgJaA9DCEM3+wPlZ3NAlIaUUpRoFUutaBZHQK/LTKaoddV1fZQoaAZoCWgPQwjfNehL79xxQJSGlFKUaBVLsWgWR0CvyzCN83MqdX2UKGgGaAloD0MIfshbrj7WcUCUhpRSlGgVS7hoFkdAr8twgNgBtHV9lChoBmgJaA9DCCOjA5Jw8nNAlIaUUpRoFUvAaBZHQK/LU7/4qPR1fZQoaAZoCWgPQwjmV3OA4JFwQJSGlFKUaBVLimgWR0Cvy4wbMotudX2UKGgGaAloD0MI1gEQd3UHc0CUhpRSlGgVS7xoFkdAr8uLsSkCWHV9lChoBmgJaA9DCB7dCItKMnNAlIaUUpRoFUu3aBZHQK/Lmd1dPcl1fZQoaAZoCWgPQwgD7+TT48VwQJSGlFKUaBVLgGgWR0Cvy3WG7BfsdX2UKGgGaAloD0MIrrfNVMg+cECUhpRSlGgVS5FoFkdAr8uvmcOLBXV9lChoBmgJaA9DCKbuyi7YJ3FAlIaUUpRoFUufaBZHQK/Ltje9Ba91fZQoaAZoCWgPQwggY+5awjRzQJSGlFKUaBVLoWgWR0Cvy4ss6JZXdX2UKGgGaAloD0MIrRdDOVHYcECUhpRSlGgVS5ZoFkdAr8uSup0fYHV9lChoBmgJaA9DCKXXZmOlZ3FAlIaUUpRoFUuqaBZHQK/MAt6ol2N1fZQoaAZoCWgPQwhOZOYCFzRxQJSGlFKUaBVLmWgWR0CvzAJAMUh3dX2UKGgGaAloD0MIX0Av3DmIc0CUhpRSlGgVS6JoFkdAr8xx31SOznV9lChoBmgJaA9DCEyo4PCC73NAlIaUUpRoFUvNaBZHQK/Mh3Zf2K51fZQoaAZoCWgPQwgsRfKVALdyQJSGlFKUaBVLrGgWR0CvzGWSdOIqdX2UKGgGaAloD0MIGhajrjXVc0CUhpRSlGgVS8doFkdAr8xtDc/MXHV9lChoBmgJaA9DCNnNjH50eXJAlIaUUpRoFUuUaBZHQK/Ms81XNkh1fZQoaAZoCWgPQwhqpnud1BJ0QJSGlFKUaBVLrGgWR0CvzIjeKsMidX2UKGgGaAloD0MI51Hxf8eicUCUhpRSlGgVS8loFkdAr8zWQOnVG3V9lChoBmgJaA9DCNbjvtU6SnJAlIaUUpRoFUu1aBZHQK/M3i4rjHZ1fZQoaAZoCWgPQwi0Hr5MVAZxQJSGlFKUaBVLrGgWR0CvzKyeZof0dX2UKGgGaAloD0MI0qxsH7JUcUCUhpRSlGgVS6VoFkdAr8zml9BrvnV9lChoBmgJaA9DCCpTzEEQ/3FAlIaUUpRoFUutaBZHQK/M5RHf/FR1fZQoaAZoCWgPQwiGx34Wi0FyQJSGlFKUaBVLr2gWR0CvzLnanJkodX2UKGgGaAloD0MI0NVW7O9cckCUhpRSlGgVS7ZoFkdAr8zUbNr0rnV9lChoBmgJaA9DCC4gtB6+aXNAlIaUUpRoFUuSaBZHQK/M2+8oQWh1fZQoaAZoCWgPQwifrBiuTpJwQJSGlFKUaBVLqWgWR0CvzRYrBj4IdX2UKGgGaAloD0MI6/1GOy4KdECUhpRSlGgVS6loFkdAr80hr8BMjHV9lChoBmgJaA9DCKDDfHmBH3FAlIaUUpRoFUuzaBZHQK/NgRr8BMl1fZQoaAZoCWgPQwj3kzE+DO5xQJSGlFKUaBVLvWgWR0CvzZZCWu5jdX2UKGgGaAloD0MIH/ZCAVudcUCUhpRSlGgVS5toFkdAr82v09QoC3V9lChoBmgJaA9DCJ0QOugSLXNAlIaUUpRoFUvEaBZHQK/NttqpLmJ1fZQoaAZoCWgPQwhUHXIz3KVwQJSGlFKUaBVLoGgWR0CvzdNRNyo5dX2UKGgGaAloD0MIacNhaaDQc0CUhpRSlGgVS+BoFkdAr83a2hIvrXV9lChoBmgJaA9DCJXurrMhMHRAlIaUUpRoFUvKaBZHQK/Nqgr6LwZ1fZQoaAZoCWgPQwjmXfWAufBzQJSGlFKUaBVLxGgWR0CvzcTlDF6zdX2UKGgGaAloD0MIWd3qOSlodECUhpRSlGgVS9NoFkdAr83TR8c+7nV9lChoBmgJaA9DCCJQ/YNI3XFAlIaUUpRoFUusaBZHQK/N0oy9EkV1fZQoaAZoCWgPQwgr3zMS4Q1yQJSGlFKUaBVLomgWR0CvziWtU4rCdX2UKGgGaAloD0MI9z5VhQa0c0CUhpRSlGgVS55oFkdAr84sm6XjVHV9lChoBmgJaA9DCLTLtz4seXNAlIaUUpRoFUuVaBZHQK/OK/8EV351fZQoaAZoCWgPQwi7DWq/9YBxQJSGlFKUaBVLi2gWR0CvzjiSJTESdX2UKGgGaAloD0MI2ClWDQLsckCUhpRSlGgVS6ZoFkdAr84ofW+XaHV9lChoBmgJaA9DCDdTIR4J5XJAlIaUUpRoFUvEaBZHQK/OOwyqMm51fZQoaAZoCWgPQwhQ5EnSdXpzQJSGlFKUaBVLx2gWR0CvzpLOiWVvdX2UKGgGaAloD0MI2nIuxRWWcUCUhpRSlGgVS69oFkdAr86aflIVd3V9lChoBmgJaA9DCPqZet0iIXBAlIaUUpRoFUuIaBZHQK/OZ+qBErp1fZQoaAZoCWgPQwg4Z0RpryFwQJSGlFKUaBVLiWgWR0Cvzm6CL/CJdX2UKGgGaAloD0MI1GNbBpyFckCUhpRSlGgVS6doFkdAr87PtShrWXV9lChoBmgJaA9DCFTle0biQnNAlIaUUpRoFUvAaBZHQK/O1NbC79R1fZQoaAZoCWgPQwg1ejVAKbtxQJSGlFKUaBVLomgWR0CvzuKUVzp5dX2UKGgGaAloD0MIxqcAGM8ic0CUhpRSlGgVS7JoFkdAr863mHP/rHV9lChoBmgJaA9DCBMLfEU3+HJAlIaUUpRoFUu+aBZHQK/O53dKujh1fZQoaAZoCWgPQwhPWOIBJc5yQJSGlFKUaBVLnGgWR0Cvzubp3X7MdX2UKGgGaAloD0MI/5QqUbZdc0CUhpRSlGgVS9doFkdAr87nMjeKsXV9lChoBmgJaA9DCEaWzLH8HXNAlIaUUpRoFUuXaBZHQK/PNRBNVR11fZQoaAZoCWgPQwjt8q0Pa0dyQJSGlFKUaBVLjWgWR0Cvz0Dv/io9dX2UKGgGaAloD0MI6BN5kvQMb0CUhpRSlGgVS5RoFkdAr89NLeyiVXV9lChoBmgJaA9DCB08E5qkAXNAlIaUUpRoFUuYaBZHQK/PMQf6oEV1fZQoaAZoCWgPQwj0/j9O2I5xQJSGlFKUaBVLomgWR0Cvz4iLl3hXdX2UKGgGaAloD0MIueAM/v4qb0CUhpRSlGgVS49oFkdAr8+N/tpmE3V9lChoBmgJaA9DCA9h/DQuxHJAlIaUUpRoFUu5aBZHQK/PlLZi/fx1fZQoaAZoCWgPQwiK5ZZWw8hyQJSGlFKUaBVLzWgWR0Cvz5p7CzkZdX2UKGgGaAloD0MITPxR1Fk/ckCUhpRSlGgVS7NoFkdAr8+kFfReC3V9lChoBmgJaA9DCBEAHHu2r3BAlIaUUpRoFUugaBZHQK/PfBLwnYx1fZQoaAZoCWgPQwi7Q4oBEhlyQJSGlFKUaBVLumgWR0Cvz4jdgv12dX2UKGgGaAloD0MIRxyygTQ9ckCUhpRSlGgVS6JoFkdAr8/h7qptJnV9lChoBmgJaA9DCF+bjZWYYXJAlIaUUpRoFUueaBZHQK/PsSoOx0N1fZQoaAZoCWgPQwgfLGNDN1NyQJSGlFKUaBVLpmgWR0Cvz8VuivgWdX2UKGgGaAloD0MIjXqIRnfbb0CUhpRSlGgVS45oFkdAr8/RqXWvsHV9lChoBmgJaA9DCMGQ1a1elXBAlIaUUpRoFUuNaBZHQK/QNqGDcud1fZQoaAZoCWgPQwgo1T4dj41GQJSGlFKUaBVLX2gWR0Cv0DzqKP4mdX2UKGgGaAloD0MITu0MU5shckCUhpRSlGgVS7FoFkdAr9BE36yjYnV9lChoBmgJaA9DCO0L6IX73XFAlIaUUpRoFUuLaBZHQK/QGVZcLSh1fZQoaAZoCWgPQwgc746M1cJyQJSGlFKUaBVLtGgWR0Cv0GPwd8zAdX2UKGgGaAloD0MIodrgRHQFb0CUhpRSlGgVS49oFkdAr9A4m5UcXHV9lChoBmgJaA9DCPjj9sunJXJAlIaUUpRoFUuLaBZHQK/QVzreImB1fZQoaAZoCWgPQwhaRX9oZmdyQJSGlFKUaBVLvmgWR0Cv0LZ8KG+LdX2UKGgGaAloD0MIMLsnD8vQckCUhpRSlGgVS7xoFkdAr9CCoESuhnV9lChoBmgJaA9DCBke+1ksV3NAlIaUUpRoFUvEaBZHQK/QvV5KODJ1fZQoaAZoCWgPQwhyNh0BXNJwQJSGlFKUaBVLoGgWR0Cv0L1JcxCZdX2UKGgGaAloD0MIb2OzI5WxcUCUhpRSlGgVS4FoFkdAr9D4ZbY9PnV9lChoBmgJaA9DCEPk9PU8gnJAlIaUUpRoFUuaaBZHQK/QxJ5E+gV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGkvaG9tZS9nYmFyYmFkaWxsby9taW5pY29uZGEzL2VudnMvcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIADpSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGkvaG9tZS9nYmFyYmFkaWxsby9taW5pY29uZGEzL2VudnMvcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-40-generic-x86_64-with-glibc2.31 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022", "Python": "3.10.4", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e84d8e1a93526daa30f0946b10979c335c2fe8a506334f8b4630ccc4c9ed0494
|
3 |
+
size 146497
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f13ffc65cf0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f13ffc65d80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f13ffc65e10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f13ffc65ea0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f13ffc65f30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f13ffc65fc0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f13ffc66050>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f13ffc660e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f13ffc66170>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f13ffc66200>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f13ffc66290>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f13ffc70240>"
|
20 |
+
},
|
21 |
+
"verbose": false,
|
22 |
+
"policy_kwargs": {
|
23 |
+
"net_arch": [
|
24 |
+
{
|
25 |
+
"pi": [
|
26 |
+
64,
|
27 |
+
64
|
28 |
+
],
|
29 |
+
"vf": [
|
30 |
+
64,
|
31 |
+
64
|
32 |
+
]
|
33 |
+
}
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"observation_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
8
|
42 |
+
],
|
43 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
44 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
45 |
+
"bounded_below": "[False False False False False False False False]",
|
46 |
+
"bounded_above": "[False False False False False False False False]",
|
47 |
+
"_np_random": null
|
48 |
+
},
|
49 |
+
"action_space": {
|
50 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
51 |
+
":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
52 |
+
"n": 4,
|
53 |
+
"_shape": [],
|
54 |
+
"dtype": "int64",
|
55 |
+
"_np_random": null
|
56 |
+
},
|
57 |
+
"n_envs": 64,
|
58 |
+
"num_timesteps": 10027008,
|
59 |
+
"_total_timesteps": 10000000,
|
60 |
+
"_num_timesteps_at_start": 0,
|
61 |
+
"seed": null,
|
62 |
+
"action_noise": null,
|
63 |
+
"start_time": 1652013367.533207,
|
64 |
+
"learning_rate": {
|
65 |
+
":type:": "<class 'function'>",
|
66 |
+
":serialized:": "gAWVzgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLQ0MEdABTAJROhZSMAmxylIWUjAF4lIWUjCIvdG1wL2lweWtlcm5lbF8yNTYxMi8zNzE0MzgxNTMyLnB5lIwIPGxhbWJkYT6USwdDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OTnSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoGX2UfZQoaBZoEIwMX19xdWFsbmFtZV9flGgQjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lGgLRz9QYk3S8an8c3WGlIZSMC4="
|
67 |
+
},
|
68 |
+
"tensorboard_log": "logs/02_constant_lr/constant_lr_1e-03",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWVzgEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLQ0MEdABTAJROhZSMAmxylIWUjAF4lIWUjCIvdG1wL2lweWtlcm5lbF8yNTYxMi8zNzE0MzgxNTMyLnB5lIwIPGxhbWJkYT6USwdDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OTnSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoGX2UfZQoaBZoEIwMX19xdWFsbmFtZV9flGgQjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lGgLRz9QYk3S8an8c3WGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAPPrtr5BrEs/moYuvj+oK79vah+/7Qh/PQAAAAAAAAAAAHJDvcCnpT+Fyw+/rG49vwHnkDsKMga+AAAAAAAAAADtyFG+qBiEPgwQmT4T4iO/exT2vUuyaD4AAAAAAAAAALMpCL2Q1os+AJJAO7dKML/I6eS7Ov4huwAAAAAAAAAAM9lMPClwSbqKmiozUNntrx01szulW82zAACAPwAAgD8zxzI94WaKun+lLTi1HyszPc8HO1IGSrcAAIA/AACAPwBUQT2PFmm69EuLuROgiLQ5DAK68s6jOAAAgD8AAIA/mlQFvUJHkT+uci6+Sllov+Hi/7wiM469AAAAAAAAAACAeTo9w8FPupjsCLy07Eay20NwOlVoA7MAAIA/AACAPzNBgTxIW4a62so1tN7FnS684Ye6NvGLMwAAgD8AAIA/Q8WePva1Nz8GUYM8qbYtv5CI+z5aRIq9AAAAAAAAAACm1X6+vHEIPt6Uhz6mUR2/A8yLvovdaD4AAAAAAAAAACa7pz2VorQ/+nBRPjbu7r7VLpk8Oj/NPQAAAAAAAAAAzaAQPBREjboht7q9jsIYvbD55DthEAY+AACAPwAAAADmaE29aOPnPVc0Pz1KPg6/zNfqvIobCT0AAAAAAAAAAMZBFT67xbY9oiDKvrYRur6/sB47Q6xavgAAAAAAAAAAGvMqvfbMS7pc84u3gn0vsjKmyrryM542AACAPwAAgD+aLSa8sMW3P04IybxWHbu+Qp4gPHIL47wAAAAAAAAAABoAsz2Fgco8ric7vmo6o74Z6fc9oKNbvQAAAAAAAAAAwB2FPkuHkz5oPeq+qR8ev8CyOT7oaIC+AAAAAAAAAADtsjQ+SKUWP/pYjj2Mf1a/AzSlPkbleL0AAAAAAAAAAOZMdD09l2i7AC5ZvF+SkDxbC5m8tud3PQAAgD8AAIA/GkJdvSGsFj6x/7Q8MGITv5AqlL3RqLO8AAAAAAAAAABmvDi8UlDDuf1CzD3SfL62zq6/OqomvbUAAIA/AACAP01OJb0cPeE+jWaLvZ/wX78WIUS9yJhxvQAAAAAAAAAAAJkxPXssibpKsuE2xtHqMRtCATvKggS2AACAPwAAgD+ak2o8j44tujrqLbRNGIKww0N3ObY8nzMAAIA/AACAP1BLrD7IgZk/yCsbP7vtRr/BDiU/baQKPgAAAAAAAAAA88IsvmSxZj+FPpK+5eA6v0Opub4wEt69AAAAAAAAAADNOSk+BG7yPTw4CL8vFti+1SIBvnYerb4AAAAAAAAAABqcez32YAC6hJk/s88McK8lQx878Li+MwAAgD8AAIA/80WLPRTd6zvmEGO+//EBvTo6hDyA8k4/AAAAAAAAAADtWQa+xvg2PwAT/L37HGy/8B9NvocGgrwAAAAAAAAAAFPhDT7R9LI9ysHmvuQoqr53scW8tC6qvgAAAAAAAAAA8+yTvQoRS7vodBA9bvoBPKLOoTxb9Oy8AACAPwAAgD/mXNm9WIGMP/C2hb4xp1u/74n9vVcxIL4AAAAAAAAAADN36zzs2s+7qbECPFGmHTwunjS9CVoKPQAAgD8AAIA/GtyXvW4ixz6ygVu9ITVCvzcbjr2CAJ86AAAAAAAAAADz2se9bYIXP0bW+r1ENmO/YPM/vhqYQLwAAAAAAAAAAEA7Jr4JwKY/8u78vgsaDb9A3Fa+7pGavgAAAAAAAAAAZrODPZuzaj96Czs+nXCCvz4nCj4IEYg9AAAAAAAAAADNpYk8UgWcu01JT76pigw9kSvqPNBS6r0AAIA/AACAP0C/wL0rSb8/owa9vjSwL77wKE69Xjh5vQAAAAAAAAAAzWh0vSnPMrz++y8+C8gGPJFbo72m6d08AACAPwAAgD+wepY+LBr1PiqKiL6uQiu/YYC7PmIOZ74AAAAAAAAAAGZGRj33T/0+BfKKPdtyWL9yE5Y9XevRPAAAAAAAAAAAMyTVvcPtO7r+OTE+xNJsuSOao7s6Q3G4AACAPwAAAADArLM9SNOqukjUn72ZhT85hifOOhBQrLgAAIA/AACAP80omzykO+A+aRaxvHE/Tr+oQpc8vyctOgAAAAAAAAAAzSVhvXk3pT82/BK/oUAzv3mTHLvhwBq+AAAAAAAAAACad++8w9F4uuZ5XD2SoxkzJlGCuqVEJDMAAIA/AACAP7BLuz4kIWQ/BtaTPkvbJr9p3Ro/PFeZvAAAAAAAAAAA88gyPvv9sT5ecRu9ltU/v4n2tT707629AAAAAAAAAAAzKZG8e0yEukF3ibq/Z4I15M97u63cnDkAAIA/AACAP2YUFD3RLas/aITYPrqoAL+EMHA7job9PQAAAAAAAAAAs2mcvY+uE7qamEI0Wikgr1DRYjq9WJ+zAACAPwAAgD9mT4s9VEmuP3ZkNz860LK+uuhAvA72DD4AAAAAAAAAACABNr7rjpE+C+QuPlR0H79KWhi+Hp/zPQAAAAAAAAAAACIiPmhE2D1LqMi+t1H9vo5j7TpMcii+AAAAAAAAAACNIrM9y8KyP3Z55j5CVoa+0f2uPbaoXz4AAAAAAAAAAKYdkT2uK5S6wuZIM2e2cK97hOk69o/BswAAgD8AAIA/ZvfzvOxjgLtmVw0+RtfsvV5y/TxuEe2+AAAAAAAAgD8aymM9k6qaPsjB+L1yCzO/oE1hPbB4HL0AAAAAAAAAAKA4QL71x28+CHhqPvVIB7/bSTu+A4VbPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": null,
|
82 |
+
"_episode_num": 0,
|
83 |
+
"use_sde": false,
|
84 |
+
"sde_sample_freq": -1,
|
85 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
86 |
+
"ep_info_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMQqCx3cdcUCUhpRSlIwBbJRLnIwBdJRHQK/KFsk6cRV1fZQoaAZoCWgPQwjCFVCoZ2VyQJSGlFKUaBVLvmgWR0CvyirpzLfUdX2UKGgGaAloD0MI1sdD391gcUCUhpRSlGgVS6VoFkdAr8n5t3wCsHV9lChoBmgJaA9DCGiULv0L83BAlIaUUpRoFUuXaBZHQK/KXC4SYgJ1fZQoaAZoCWgPQwgN/KiGfZhzQJSGlFKUaBVLpWgWR0CvynwCjk+5dX2UKGgGaAloD0MIRkHw+DbkcUCUhpRSlGgVS9BoFkdAr8qSCDmKZXV9lChoBmgJaA9DCKyMRj6vsm9AlIaUUpRoFUuuaBZHQK/KmMaS9uh1fZQoaAZoCWgPQwhNnrKarkVyQJSGlFKUaBVLvGgWR0CvyokPUaybdX2UKGgGaAloD0MIDaX2IpqvcUCUhpRSlGgVS7NoFkdAr8rRvaURnXV9lChoBmgJaA9DCPqa5bKRRnJAlIaUUpRoFUuaaBZHQK/KsgrYoRZ1fZQoaAZoCWgPQwgvTRHgdPRxQJSGlFKUaBVLlGgWR0CvysbvoePrdX2UKGgGaAloD0MIdy0hH/QacECUhpRSlGgVS6doFkdAr8rHGVAzHnV9lChoBmgJaA9DCGKCGr7FeHJAlIaUUpRoFUu+aBZHQK/LHUjs2Nx1fZQoaAZoCWgPQwgnT1lN1+BzQJSGlFKUaBVLwmgWR0CvyyokZ75VdX2UKGgGaAloD0MIB5rPuZv1c0CUhpRSlGgVS6FoFkdAr8sU34sVcnV9lChoBmgJaA9DCEM3+wPlZ3NAlIaUUpRoFUutaBZHQK/LTKaoddV1fZQoaAZoCWgPQwjfNehL79xxQJSGlFKUaBVLsWgWR0CvyzCN83MqdX2UKGgGaAloD0MIfshbrj7WcUCUhpRSlGgVS7hoFkdAr8twgNgBtHV9lChoBmgJaA9DCCOjA5Jw8nNAlIaUUpRoFUvAaBZHQK/LU7/4qPR1fZQoaAZoCWgPQwjmV3OA4JFwQJSGlFKUaBVLimgWR0Cvy4wbMotudX2UKGgGaAloD0MI1gEQd3UHc0CUhpRSlGgVS7xoFkdAr8uLsSkCWHV9lChoBmgJaA9DCB7dCItKMnNAlIaUUpRoFUu3aBZHQK/Lmd1dPcl1fZQoaAZoCWgPQwgD7+TT48VwQJSGlFKUaBVLgGgWR0Cvy3WG7BfsdX2UKGgGaAloD0MIrrfNVMg+cECUhpRSlGgVS5FoFkdAr8uvmcOLBXV9lChoBmgJaA9DCKbuyi7YJ3FAlIaUUpRoFUufaBZHQK/Ltje9Ba91fZQoaAZoCWgPQwggY+5awjRzQJSGlFKUaBVLoWgWR0Cvy4ss6JZXdX2UKGgGaAloD0MIrRdDOVHYcECUhpRSlGgVS5ZoFkdAr8uSup0fYHV9lChoBmgJaA9DCKXXZmOlZ3FAlIaUUpRoFUuqaBZHQK/MAt6ol2N1fZQoaAZoCWgPQwhOZOYCFzRxQJSGlFKUaBVLmWgWR0CvzAJAMUh3dX2UKGgGaAloD0MIX0Av3DmIc0CUhpRSlGgVS6JoFkdAr8xx31SOznV9lChoBmgJaA9DCEyo4PCC73NAlIaUUpRoFUvNaBZHQK/Mh3Zf2K51fZQoaAZoCWgPQwgsRfKVALdyQJSGlFKUaBVLrGgWR0CvzGWSdOIqdX2UKGgGaAloD0MIGhajrjXVc0CUhpRSlGgVS8doFkdAr8xtDc/MXHV9lChoBmgJaA9DCNnNjH50eXJAlIaUUpRoFUuUaBZHQK/Ms81XNkh1fZQoaAZoCWgPQwhqpnud1BJ0QJSGlFKUaBVLrGgWR0CvzIjeKsMidX2UKGgGaAloD0MI51Hxf8eicUCUhpRSlGgVS8loFkdAr8zWQOnVG3V9lChoBmgJaA9DCNbjvtU6SnJAlIaUUpRoFUu1aBZHQK/M3i4rjHZ1fZQoaAZoCWgPQwi0Hr5MVAZxQJSGlFKUaBVLrGgWR0CvzKyeZof0dX2UKGgGaAloD0MI0qxsH7JUcUCUhpRSlGgVS6VoFkdAr8zml9BrvnV9lChoBmgJaA9DCCpTzEEQ/3FAlIaUUpRoFUutaBZHQK/M5RHf/FR1fZQoaAZoCWgPQwiGx34Wi0FyQJSGlFKUaBVLr2gWR0CvzLnanJkodX2UKGgGaAloD0MI0NVW7O9cckCUhpRSlGgVS7ZoFkdAr8zUbNr0rnV9lChoBmgJaA9DCC4gtB6+aXNAlIaUUpRoFUuSaBZHQK/M2+8oQWh1fZQoaAZoCWgPQwifrBiuTpJwQJSGlFKUaBVLqWgWR0CvzRYrBj4IdX2UKGgGaAloD0MI6/1GOy4KdECUhpRSlGgVS6loFkdAr80hr8BMjHV9lChoBmgJaA9DCKDDfHmBH3FAlIaUUpRoFUuzaBZHQK/NgRr8BMl1fZQoaAZoCWgPQwj3kzE+DO5xQJSGlFKUaBVLvWgWR0CvzZZCWu5jdX2UKGgGaAloD0MIH/ZCAVudcUCUhpRSlGgVS5toFkdAr82v09QoC3V9lChoBmgJaA9DCJ0QOugSLXNAlIaUUpRoFUvEaBZHQK/NttqpLmJ1fZQoaAZoCWgPQwhUHXIz3KVwQJSGlFKUaBVLoGgWR0CvzdNRNyo5dX2UKGgGaAloD0MIacNhaaDQc0CUhpRSlGgVS+BoFkdAr83a2hIvrXV9lChoBmgJaA9DCJXurrMhMHRAlIaUUpRoFUvKaBZHQK/Nqgr6LwZ1fZQoaAZoCWgPQwjmXfWAufBzQJSGlFKUaBVLxGgWR0CvzcTlDF6zdX2UKGgGaAloD0MIWd3qOSlodECUhpRSlGgVS9NoFkdAr83TR8c+7nV9lChoBmgJaA9DCCJQ/YNI3XFAlIaUUpRoFUusaBZHQK/N0oy9EkV1fZQoaAZoCWgPQwgr3zMS4Q1yQJSGlFKUaBVLomgWR0CvziWtU4rCdX2UKGgGaAloD0MI9z5VhQa0c0CUhpRSlGgVS55oFkdAr84sm6XjVHV9lChoBmgJaA9DCLTLtz4seXNAlIaUUpRoFUuVaBZHQK/OK/8EV351fZQoaAZoCWgPQwi7DWq/9YBxQJSGlFKUaBVLi2gWR0CvzjiSJTESdX2UKGgGaAloD0MI2ClWDQLsckCUhpRSlGgVS6ZoFkdAr84ofW+XaHV9lChoBmgJaA9DCDdTIR4J5XJAlIaUUpRoFUvEaBZHQK/OOwyqMm51fZQoaAZoCWgPQwhQ5EnSdXpzQJSGlFKUaBVLx2gWR0CvzpLOiWVvdX2UKGgGaAloD0MI2nIuxRWWcUCUhpRSlGgVS69oFkdAr86aflIVd3V9lChoBmgJaA9DCPqZet0iIXBAlIaUUpRoFUuIaBZHQK/OZ+qBErp1fZQoaAZoCWgPQwg4Z0RpryFwQJSGlFKUaBVLiWgWR0Cvzm6CL/CJdX2UKGgGaAloD0MI1GNbBpyFckCUhpRSlGgVS6doFkdAr87PtShrWXV9lChoBmgJaA9DCFTle0biQnNAlIaUUpRoFUvAaBZHQK/O1NbC79R1fZQoaAZoCWgPQwg1ejVAKbtxQJSGlFKUaBVLomgWR0CvzuKUVzp5dX2UKGgGaAloD0MIxqcAGM8ic0CUhpRSlGgVS7JoFkdAr863mHP/rHV9lChoBmgJaA9DCBMLfEU3+HJAlIaUUpRoFUu+aBZHQK/O53dKujh1fZQoaAZoCWgPQwhPWOIBJc5yQJSGlFKUaBVLnGgWR0Cvzubp3X7MdX2UKGgGaAloD0MI/5QqUbZdc0CUhpRSlGgVS9doFkdAr87nMjeKsXV9lChoBmgJaA9DCEaWzLH8HXNAlIaUUpRoFUuXaBZHQK/PNRBNVR11fZQoaAZoCWgPQwjt8q0Pa0dyQJSGlFKUaBVLjWgWR0Cvz0Dv/io9dX2UKGgGaAloD0MI6BN5kvQMb0CUhpRSlGgVS5RoFkdAr89NLeyiVXV9lChoBmgJaA9DCB08E5qkAXNAlIaUUpRoFUuYaBZHQK/PMQf6oEV1fZQoaAZoCWgPQwj0/j9O2I5xQJSGlFKUaBVLomgWR0Cvz4iLl3hXdX2UKGgGaAloD0MIueAM/v4qb0CUhpRSlGgVS49oFkdAr8+N/tpmE3V9lChoBmgJaA9DCA9h/DQuxHJAlIaUUpRoFUu5aBZHQK/PlLZi/fx1fZQoaAZoCWgPQwiK5ZZWw8hyQJSGlFKUaBVLzWgWR0Cvz5p7CzkZdX2UKGgGaAloD0MITPxR1Fk/ckCUhpRSlGgVS7NoFkdAr8+kFfReC3V9lChoBmgJaA9DCBEAHHu2r3BAlIaUUpRoFUugaBZHQK/PfBLwnYx1fZQoaAZoCWgPQwi7Q4oBEhlyQJSGlFKUaBVLumgWR0Cvz4jdgv12dX2UKGgGaAloD0MIRxyygTQ9ckCUhpRSlGgVS6JoFkdAr8/h7qptJnV9lChoBmgJaA9DCF+bjZWYYXJAlIaUUpRoFUueaBZHQK/PsSoOx0N1fZQoaAZoCWgPQwgfLGNDN1NyQJSGlFKUaBVLpmgWR0Cvz8VuivgWdX2UKGgGaAloD0MIjXqIRnfbb0CUhpRSlGgVS45oFkdAr8/RqXWvsHV9lChoBmgJaA9DCMGQ1a1elXBAlIaUUpRoFUuNaBZHQK/QNqGDcud1fZQoaAZoCWgPQwgo1T4dj41GQJSGlFKUaBVLX2gWR0Cv0DzqKP4mdX2UKGgGaAloD0MITu0MU5shckCUhpRSlGgVS7FoFkdAr9BE36yjYnV9lChoBmgJaA9DCO0L6IX73XFAlIaUUpRoFUuLaBZHQK/QGVZcLSh1fZQoaAZoCWgPQwgc746M1cJyQJSGlFKUaBVLtGgWR0Cv0GPwd8zAdX2UKGgGaAloD0MIodrgRHQFb0CUhpRSlGgVS49oFkdAr9A4m5UcXHV9lChoBmgJaA9DCPjj9sunJXJAlIaUUpRoFUuLaBZHQK/QVzreImB1fZQoaAZoCWgPQwhaRX9oZmdyQJSGlFKUaBVLvmgWR0Cv0LZ8KG+LdX2UKGgGaAloD0MIMLsnD8vQckCUhpRSlGgVS7xoFkdAr9CCoESuhnV9lChoBmgJaA9DCBke+1ksV3NAlIaUUpRoFUvEaBZHQK/QvV5KODJ1fZQoaAZoCWgPQwhyNh0BXNJwQJSGlFKUaBVLoGgWR0Cv0L1JcxCZdX2UKGgGaAloD0MIb2OzI5WxcUCUhpRSlGgVS4FoFkdAr9D4ZbY9PnV9lChoBmgJaA9DCEPk9PU8gnJAlIaUUpRoFUuaaBZHQK/QxJ5E+gV1ZS4="
|
89 |
+
},
|
90 |
+
"ep_success_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
93 |
+
},
|
94 |
+
"_n_updates": 612,
|
95 |
+
"n_steps": 1024,
|
96 |
+
"gamma": 0.99,
|
97 |
+
"gae_lambda": 0.98,
|
98 |
+
"ent_coef": 0.01,
|
99 |
+
"vf_coef": 0.5,
|
100 |
+
"max_grad_norm": 0.5,
|
101 |
+
"batch_size": 256,
|
102 |
+
"n_epochs": 4,
|
103 |
+
"clip_range": {
|
104 |
+
":type:": "<class 'function'>",
|
105 |
+
":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGkvaG9tZS9nYmFyYmFkaWxsby9taW5pY29uZGEzL2VudnMvcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIADpSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGkvaG9tZS9nYmFyYmFkaWxsby9taW5pY29uZGEzL2VudnMvcmwtY2xhc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
106 |
+
},
|
107 |
+
"clip_range_vf": null,
|
108 |
+
"normalize_advantage": true,
|
109 |
+
"target_kl": null
|
110 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2181f568cff9a8bf69ac6e061a9eaef2b9466064f13f86c1038e5b7108db8fa
|
3 |
+
size 84637
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20c37c4542ddf950f42a4b84f858c3cc0f7e2dc8fb3d653dafad86434dddd119
|
3 |
+
size 43073
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-40-generic-x86_64-with-glibc2.31 #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022
|
2 |
+
Python: 3.10.4
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.5
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5c76343d35c104ccdc98f31ded8de4b8031d57c7c067a0ccc45d47915db05ab
|
3 |
+
size 189335
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 301.1575534032505, "std_reward": 11.977306143406713, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T19:47:41.010000"}
|